Ural 1183 Brackets Sequence(区间DP+记忆化搜索)
题目地址:Ural 1183
最终把这题给A了。。
。拖拉了好长时间,。。
自己想还是想不出来,正好紫书上有这题。
d[i][j]为输入序列从下标i到下标j最少须要加多少括号才干成为合法序列。0<=i<=j<len (len为输入序列的长度)。
c[i][j]为输入序列从下标i到下标j的断开位置。假设没有断开则为-1。
当i==j时。d[i][j]为1
当s[i]=='(' && s[j]==')' 或者 s[i]=='[' && s[j]==']'时,d[i][j]=d[i+1][j-1]
否则d[i][j]=min{d[i][k]+d[k+1][j]} i<=k<j , c[i][j]记录断开的位置k
採用递推方式计算d[i][j]
输出结果时採用递归方式输出print(0, len-1)
输出函数定义为print(int i, int j),表示输出从下标i到下标j的合法序列
当i>j时。直接返回,不须要输出
当i==j时。d[i][j]为1,至少要加一个括号。假设s[i]为'(' 或者')'。输出"()",否则输出"[]"
当i>j时,假设c[i][j]>=0。说明从i到j断开了。则递归调用print(i, c[i][j]);和print(c[i][j]+1, j);
假设c[i][j]<0,说明没有断开。假设s[i]=='(' 则输出'('、 print(i+1, j-1); 和")"
否则输出"[" print(i+1, j-1);和"]"
代码例如以下:
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm> using namespace std;
#define LL __int64
const int INF=0x3f3f3f3f;
char s[200];
int dp[110][110], tag[110][110];
int match(char c1, char c2)
{
if((c1=='('&&c2==')')||(c1=='['&&c2==']'))
return 1;
return 0;
}
void print(int l, int r)
{
if(l>r) return ;
if(l==r)
{
if(s[l]=='('||s[l]==')')
printf("()");
else
printf("[]");
}
else if(tag[l][r]==-1)
{
printf("%c",s[l]);
print(l+1,r-1);
printf("%c",s[r]);
}
else
{
print(l,tag[l][r]);
print(tag[l][r]+1,r);
}
}
int main()
{
int n, m, i, j, len, k;
gets(s);
len=strlen(s);
if(len==0)
{
puts("");
}
memset(dp,INF,sizeof(dp));
memset(tag,-1,sizeof(tag));
for(i=0;i<len;i++)
{
dp[i][i]=1;
dp[i+1][i]=0;
}
for(i=len-2;i>=0;i--)
{
for(j=i+1;j<len;j++)
{
dp[i][j]=len+1;
if(match(s[i],s[j]))
{
dp[i][j]=min(dp[i][j],dp[i+1][j-1]);
}
for(k=i;k<=j;k++)
{
if(dp[i][j]>dp[i][k]+dp[k+1][j])
{
dp[i][j]=dp[i][k]+dp[k+1][j];
tag[i][j]=k;
}
}
}
}
//printf("%d\n",dp[0][len-1]);
/*for(i=0;i<4;i++)
{
for(j=0;j<4;j++)
{
printf("%d ",tag[i][j]);
}
puts("");
}*/
print(0,len-1);
puts("");
return 0;
}
Ural 1183 Brackets Sequence(区间DP+记忆化搜索)的更多相关文章
- (区间dp + 记忆化搜索)Treats for the Cows (POJ 3186)
http://poj.org/problem?id=3186 Description FJ has purchased N (1 <= N <= 2000) yummy treats ...
- UVA 10003 Cutting Sticks 区间DP+记忆化搜索
UVA 10003 Cutting Sticks+区间DP 纵有疾风起 题目大意 有一个长为L的木棍,木棍中间有n个切点.每次切割的费用为当前木棍的长度.求切割木棍的最小费用 输入输出 第一行是木棍的 ...
- uva 10891 区间dp+记忆化搜索
https://vjudge.net/problem/UVA-10891 给定一个序列x,A和B依次取数,规则是每次只能从头或者尾部取走若干个数,A和B采取的策略使得自己取出的数尽量和最大,A是先手, ...
- URAL 1183 Brackets Sequence(DP)
题目链接 题意 : 给你一串由括号组成的串,让你添加最少的括号使该串匹配. 思路 : 黑书上的DP.dp[i][j] = min{dp[i+1][j-1] (sh[i] == sh[j]),dp[i] ...
- loj 1031(区间dp+记忆化搜索)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1031 思路:dp[i][j]表示从区间i-j中能取得的最大值,然后就是枚举分割点了. ...
- BZOJ1055[HAOI2008]玩具取名 【区间dp + 记忆化搜索】
题目 某人有一套玩具,并想法给玩具命名.首先他选择WING四个字母中的任意一个字母作为玩具的基本名字.然后 他会根据自己的喜好,将名字中任意一个字母用“WING”中任意两个字母代替,使得自己的名字能够 ...
- HDU 2517 / POJ 1191 棋盘分割 区间DP / 记忆化搜索
题目链接: 黑书 P116 HDU 2157 棋盘分割 POJ 1191 棋盘分割 分析: 枚举所有可能的切割方法. 但如果用递归的方法要加上记忆搜索, 不能会超时... 代码: #include& ...
- hdu 4597 Play Game(区间dp,记忆化搜索)
Problem Description Alice and Bob are playing a game. There are two piles of cards. There are N card ...
- poj 1088 滑雪(区间dp+记忆化搜索)
题目链接:http://poj.org/problem?id=1088 思路分析: 1>状态定义:状态dp[i][j]表示在位置map[i][j]可以滑雪的最长区域长度: 2>状态转移方程 ...
随机推荐
- JavaScript standard 代码规范的全文
这是 JavaScript standard 代码规范的全文. 掌握本规范的最好方法是安装并在自己的代码中使用它. 细则 使用两个空格进行缩进. eslint: indent function hel ...
- c# 后台异步请求接口
第一步:引用程序集:Systen.Net.Http 第一种方式: 异步 Get请求 HttpClient client = new HttpClient(); //client. ...
- RPC簡介
RPC 技术原理 RPC ( Remote Procedure Call Protocol,远程过程调用协议 ): 客户端在不知道调用细节的情况下,调用存在于远程计算机上的某个对象,就像调 ...
- openwrt-rpcd服务ACL配置错误风险分析
前言 openwrt 是一个用于的 路由器 的开源系统. 其他类似的路由器系统相比它的更新速度非常的快,可以看看 github 的更新速度 https://github.com/openwrt/ope ...
- 回归JavaScript基础(一)
主题:JavaScript简介. 一.JavaScript的起源 JavaScript诞生于1995年.当时,它的主要作用是处理一些输入验证操作.之前的话,都是把表单数据发送到服务器端,然后再去判断有 ...
- IIS 中托管基于TCP绑定的WCF服务
IIS 中托管基于TCP绑定的WCF服务 一.创建一个基于TCP绑定的WCF服务 1.创建一个的简单的服务具体代码如下 服务契约定义 namespace SimpleService { // 注意: ...
- windows下查看端口占用以及进程名称
http://www.cnblogs.com/rollenholt/archive/2012/08/17/2644657.html
- oracle动态添加一条记录
/// <summary> /// 添加一个实体 /// </summary> /// <typeparam name="T">实体名称< ...
- 解决js跨域
这里说的js跨域是指通过js在不同的域之间进行数据传输或通信,比如用ajax向一个不同的域请求数据,或者通过js获取页面中不同域的框架中(iframe)的数据.只要协议.域名.端口有任何一个不同,都被 ...
- leetcode 刷题
176:第二高的薪水 offset ) as secondhighestsalary; ---去掉第一个,再从第一个开始 177:第N高的薪水 ------相关子查询:子查询中引用了外层查询所引用表的 ...