Deep compression code
https://github.com/songhan/SqueezeNet-Deep-Compression
import sys
import os
import numpy as np
import pickle help_ = '''
Usage:
decode.py <net.prototxt> <net.binary> <target.caffemodel>
Set variable CAFFE_ROOT as root of caffe before run this demo!
''' if len(sys.argv) != 4:
print help_
sys.exit()
else:
prototxt = sys.argv[1]
net_bin = sys.argv[2]
target = sys.argv[3] # os.system("cd $CAFFE_ROOT")
caffe_root = os.environ["CAFFE_ROOT"]
os.chdir(caffe_root)
print caffe_root
sys.path.insert(0, caffe_root + 'python')
import caffe caffe.set_mode_cpu()
net = caffe.Net(prototxt, caffe.TEST)
layers = filter(lambda x:'conv' in x or 'fc' in x or 'ip' in x, net.params.keys()) fin = open(net_bin, 'rb') def binary_to_net(weights, spm_stream, ind_stream, codebook, num_nz):
bits = np.log2(codebook.size)
if bits == 4:
slots = 2
elif bits == 8:
slots = 1
else:
print "Not impemented,", bits
sys.exit()
code = np.zeros(weights.size, np.uint8) # Recover from binary stream
spm = np.zeros(num_nz, np.uint8)
ind = np.zeros(num_nz, np.uint8)
if slots == 2:
spm[np.arange(0, num_nz, 2)] = spm_stream % (2**4)
spm[np.arange(1, num_nz, 2)] = spm_stream / (2**4)
else:
spm = spm_stream
ind[np.arange(0, num_nz, 2)] = ind_stream% (2**4)
ind[np.arange(1, num_nz, 2)] = ind_stream/ (2**4) # Recover the matrix
ind = np.cumsum(ind+1)-1
code[ind] = spm
data = np.reshape(codebook[code], weights.shape)
np.copyto(weights, data) nz_num = np.fromfile(fin, dtype = np.uint32, count = len(layers))
for idx, layer in enumerate(layers):
print "Reconstruct layer", layer
print "Total Non-zero number:", nz_num[idx]
#eg . Reconstruct layer conv1
#Total Non-zero number: 13902
if 'conv' in layer:
bits = 8 #卷积层使用8bit量化,全连接使用4bit
else:
bits = 4
codebook_size = 2 ** bits #所有码字的总数
codebook = np.fromfile(fin, dtype = np.float32, count = codebook_size)
bias = np.fromfile(fin, dtype = np.float32, count = net.params[layer][1].data.size)
np.copyto(net.params[layer][1].data, bias) #把fin里的值拷贝进去,原先net.params[layer][1].data全部都是0 spm_stream = np.fromfile(fin, dtype = np.uint8, count = (nz_num[idx]-1) / (8/bits) + 1)
ind_stream = np.fromfile(fin, dtype = np.uint8, count = (nz_num[idx]-1) / 2+1) binary_to_net(net.params[layer][0].data, spm_stream, ind_stream, codebook, nz_num[idx]) net.save(target)
Deep compression code的更多相关文章
- [综述]Deep Compression/Acceleration深度压缩/加速/量化
Survey Recent Advances in Efficient Computation of Deep Convolutional Neural Networks, [arxiv '18] A ...
- DEEP COMPRESSION小记
2016ICLR最佳论文 Deep Compression: Compression Deep Neural Networks With Pruning, Trained Quantization A ...
- Deep Compression Compressing Deep Neural Networks With Pruning, Trained QuantizationAnd Huffman Coding
转载请注明出处: http://www.cnblogs.com/sysuzyq/p/6200613.html by 少侠阿朱
- 论文翻译:2021_Towards model compression for deep learning based speech enhancement
论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model c ...
- A Full Hardware Guide to Deep Learning
A Full Hardware Guide to Deep Learning Deep Learning is very computationally intensive, so you will ...
- 网络压缩论文集(network compression)
Convolutional Neural Networks ImageNet Models Architecture Design Activation Functions Visualization ...
- cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning 听课笔记
1. 深度学习面临的问题: 1)模型越来越大,很难在移动端部署,也很难网络更新. 2)训练时间越来越长,限制了研究人员的产量. 3)耗能太多,硬件成本昂贵. 解决的方法:联合设计算法和硬件. 计算硬件 ...
- 深度学习网络压缩模型方法总结(model compression)
两派 1. 新的卷机计算方法 这种是直接提出新的卷机计算方式,从而减少参数,达到压缩模型的效果,例如SqueezedNet,mobileNet SqueezeNet: AlexNet-level ac ...
- (zhuan) Where can I start with Deep Learning?
Where can I start with Deep Learning? By Rotek Song, Deep Reinforcement Learning/Robotics/Computer V ...
随机推荐
- PostgreSQL教程收集(中文文档/命令行工具/常用命令)
http://www.postgres.cn/docs/9.6/index.html(中文文档) https://www.postgresql.org/docs/10/static/auth-meth ...
- 淘宝--印风 专注于MySQL内核代码
http://blog.csdn.net/zhaiwx1987/article/details/6113472?utm_source=jiancool
- js Date 函数方法
var myDate = new Date(); myDate.getYear(); //获取当前年份(2位) myDate.getFullYear(); //获取完整的年份(4位,1970-???? ...
- QT编程之——使用全局变量
在Qt中使用全局变量的实例 1.首先须要在一个头文件里对全局了变量使用exern方法进行定义. //g.h extern char *testStr; 2.仅仅能在cpp文件里对事实上例化,而且实例化 ...
- 混沌数学之Duffing(杜芬)振子
杜芬振子 Duffing oscillator是一个描写强迫振动的振动子,由非线性微分方程表示 杜芬方程列式如下: 其中 γ控制阻尼度 α控制韧度 β控制动力的非线性度 δ驱动力的振幅 ω驱动力的圆频 ...
- C语言编译器不检查数组下标越界
这两天被人问了一个问题说假如C/C++访问下表越界的数组元素会报错么,于是充满好奇心的我动手试了一下,WTF,果然没有报错,但是会给程序带来莫名其妙的结果(比如十次的循环但是变成了死循环,但八次却可以 ...
- Informatica 常用组件Source Qualifier之八 Distinct
如果希望 PowerCenter 从源选择唯一值,您可以使用"选择相异"选项.例如,您可以使用此功能从列出总销售额的表中提取唯一客户标识.使用"选择相异"过滤器 ...
- HDU2669 Romantic 扩展欧几里德 对我来说有陷阱
这道题对我来说有陷阱虽说是赤果果的扩展欧几里德,看样子基本攻还是不够哈,基本功夫一定要好,准备每天上那种洗脑课时分 多看看数论书,弥补一下 自己 狗一样的基础, 这道题用到了一个性质: 对于不定整数 ...
- iOS开发-JSON解析
JSON(JavaScript Object Notation)在网络传输中几乎无处不在,JSON是一种轻量级的数据交换格式,是基于JavaScript(Standard ECMA-262 3rd E ...
- JavaScript操作XML (一)
JavaScript操作XML是通过XML DOM来完成的.那么什么是XML DOM呢?XML DOM 是: 用于 XML 的标准对象模型 用于 XML 的标准编程接口 中立于平台和语言 W3C 的标 ...