https://github.com/songhan/SqueezeNet-Deep-Compression

import sys
import os
import numpy as np
import pickle help_ = '''
Usage:
decode.py <net.prototxt> <net.binary> <target.caffemodel>
Set variable CAFFE_ROOT as root of caffe before run this demo!
''' if len(sys.argv) != 4:
print help_
sys.exit()
else:
prototxt = sys.argv[1]
net_bin = sys.argv[2]
target = sys.argv[3] # os.system("cd $CAFFE_ROOT")
caffe_root = os.environ["CAFFE_ROOT"]
os.chdir(caffe_root)
print caffe_root
sys.path.insert(0, caffe_root + 'python')
import caffe caffe.set_mode_cpu()
net = caffe.Net(prototxt, caffe.TEST)
layers = filter(lambda x:'conv' in x or 'fc' in x or 'ip' in x, net.params.keys()) fin = open(net_bin, 'rb') def binary_to_net(weights, spm_stream, ind_stream, codebook, num_nz):
bits = np.log2(codebook.size)
if bits == 4:
slots = 2
elif bits == 8:
slots = 1
else:
print "Not impemented,", bits
sys.exit()
code = np.zeros(weights.size, np.uint8) # Recover from binary stream
spm = np.zeros(num_nz, np.uint8)
ind = np.zeros(num_nz, np.uint8)
if slots == 2:
spm[np.arange(0, num_nz, 2)] = spm_stream % (2**4)
spm[np.arange(1, num_nz, 2)] = spm_stream / (2**4)
else:
spm = spm_stream
ind[np.arange(0, num_nz, 2)] = ind_stream% (2**4)
ind[np.arange(1, num_nz, 2)] = ind_stream/ (2**4) # Recover the matrix
ind = np.cumsum(ind+1)-1
code[ind] = spm
data = np.reshape(codebook[code], weights.shape)
np.copyto(weights, data) nz_num = np.fromfile(fin, dtype = np.uint32, count = len(layers))
for idx, layer in enumerate(layers):
print "Reconstruct layer", layer
print "Total Non-zero number:", nz_num[idx]
#eg . Reconstruct layer conv1
#Total Non-zero number: 13902
if 'conv' in layer:
bits = 8 #卷积层使用8bit量化,全连接使用4bit
else:
bits = 4
codebook_size = 2 ** bits #所有码字的总数
codebook = np.fromfile(fin, dtype = np.float32, count = codebook_size)
bias = np.fromfile(fin, dtype = np.float32, count = net.params[layer][1].data.size)
np.copyto(net.params[layer][1].data, bias)   #把fin里的值拷贝进去,原先net.params[layer][1].data全部都是0 spm_stream = np.fromfile(fin, dtype = np.uint8, count = (nz_num[idx]-1) / (8/bits) + 1)
ind_stream = np.fromfile(fin, dtype = np.uint8, count = (nz_num[idx]-1) / 2+1) binary_to_net(net.params[layer][0].data, spm_stream, ind_stream, codebook, nz_num[idx]) net.save(target)

Deep compression code的更多相关文章

  1. [综述]Deep Compression/Acceleration深度压缩/加速/量化

    Survey Recent Advances in Efficient Computation of Deep Convolutional Neural Networks, [arxiv '18] A ...

  2. DEEP COMPRESSION小记

    2016ICLR最佳论文 Deep Compression: Compression Deep Neural Networks With Pruning, Trained Quantization A ...

  3. Deep Compression Compressing Deep Neural Networks With Pruning, Trained QuantizationAnd Huffman Coding

    转载请注明出处: http://www.cnblogs.com/sysuzyq/p/6200613.html by 少侠阿朱

  4. 论文翻译:2021_Towards model compression for deep learning based speech enhancement

    论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model c ...

  5. A Full Hardware Guide to Deep Learning

    A Full Hardware Guide to Deep Learning Deep Learning is very computationally intensive, so you will ...

  6. 网络压缩论文集(network compression)

    Convolutional Neural Networks ImageNet Models Architecture Design Activation Functions Visualization ...

  7. cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning 听课笔记

    1. 深度学习面临的问题: 1)模型越来越大,很难在移动端部署,也很难网络更新. 2)训练时间越来越长,限制了研究人员的产量. 3)耗能太多,硬件成本昂贵. 解决的方法:联合设计算法和硬件. 计算硬件 ...

  8. 深度学习网络压缩模型方法总结(model compression)

    两派 1. 新的卷机计算方法 这种是直接提出新的卷机计算方式,从而减少参数,达到压缩模型的效果,例如SqueezedNet,mobileNet SqueezeNet: AlexNet-level ac ...

  9. (zhuan) Where can I start with Deep Learning?

    Where can I start with Deep Learning? By Rotek Song, Deep Reinforcement Learning/Robotics/Computer V ...

随机推荐

  1. 用zrender实现工作流图形化设计(附范例代码)

    公司研发的管理系统有工作流图形化设计和查看功能,这个功能的开发历史比较久远.在那个暗无天日的年月里,IE几乎一统江湖,所以顺理成章地采用了当时红极一时的VML技术. 后来的事情大家都知道了,IE开始走 ...

  2. hadoop学习;Streaming,aggregate;combiner

    hadoop streaming同意我们使用不论什么可运行脚本来处理按行组织的数据流,数据取自UNIX的标准输入STDIN,并输出到STDOUT 我们能够用 linux命令管道查看文本有多少行,cat ...

  3. Maven根据不同环境打包不同配置文件

    开发项目时会遇到这个问题:开发环境,测试环境,生产环境的配置文件不同,打包时经常要手动更改配置文件,更改的少还可以接受,但是如果需要更多个配置文件,手动的方法就显得非常笨重了. 下面介绍一种方法,利用 ...

  4. setTimeout() 实现程序每隔一段时间自己主动运行

    定义和使用方法 setTimeout() 方法用于在指定的毫秒数后调用函数或计算表达式. 语法 setTimeout(code,millisec) 參数 描写叙述 code 必需.要调用的函数后要运行 ...

  5. Detecting Underlying Linux Distro

    If you are the owner of the system, then you know which Linux is installed and running. This article ...

  6. 关于Unity中Shader的内置值

    Unity provides a handful of builtin values for your shaders: things like current object's transforma ...

  7. iptables配置实践

    前言 在大企业中防火墙角色主要交给硬件来支持,效果自然没话说只是需要增加一点点成本,但对于大多数个人或者互联网公司来说选择系统自带的iptables或者第三方云防火墙似乎是更加合适的选择,通过一些合理 ...

  8. ngx_lua实现登录逻辑

    最近在公司做一个简单的portal,本来很简单的,只用ngx_lua就可以实现所有的业务逻辑,不需要upstream上游服务.但被要求接入公司内部的用户校验系统,说白了就是一个登录过程,只允许公司内部 ...

  9. Coursera课程《大家的Python》中一些资料

    Printed copies of Python for Informatics are available for $10 or less from Amazon and $2 or less on ...

  10. wtforms的简单示例

    1.先定义一个类: #!/usr/bin/env python # -*- coding: utf-8 -*- # Created by xxx on 2017/3/13 from wtforms i ...