Deep compression code
https://github.com/songhan/SqueezeNet-Deep-Compression
import sys
import os
import numpy as np
import pickle help_ = '''
Usage:
decode.py <net.prototxt> <net.binary> <target.caffemodel>
Set variable CAFFE_ROOT as root of caffe before run this demo!
''' if len(sys.argv) != 4:
print help_
sys.exit()
else:
prototxt = sys.argv[1]
net_bin = sys.argv[2]
target = sys.argv[3] # os.system("cd $CAFFE_ROOT")
caffe_root = os.environ["CAFFE_ROOT"]
os.chdir(caffe_root)
print caffe_root
sys.path.insert(0, caffe_root + 'python')
import caffe caffe.set_mode_cpu()
net = caffe.Net(prototxt, caffe.TEST)
layers = filter(lambda x:'conv' in x or 'fc' in x or 'ip' in x, net.params.keys()) fin = open(net_bin, 'rb') def binary_to_net(weights, spm_stream, ind_stream, codebook, num_nz):
bits = np.log2(codebook.size)
if bits == 4:
slots = 2
elif bits == 8:
slots = 1
else:
print "Not impemented,", bits
sys.exit()
code = np.zeros(weights.size, np.uint8) # Recover from binary stream
spm = np.zeros(num_nz, np.uint8)
ind = np.zeros(num_nz, np.uint8)
if slots == 2:
spm[np.arange(0, num_nz, 2)] = spm_stream % (2**4)
spm[np.arange(1, num_nz, 2)] = spm_stream / (2**4)
else:
spm = spm_stream
ind[np.arange(0, num_nz, 2)] = ind_stream% (2**4)
ind[np.arange(1, num_nz, 2)] = ind_stream/ (2**4) # Recover the matrix
ind = np.cumsum(ind+1)-1
code[ind] = spm
data = np.reshape(codebook[code], weights.shape)
np.copyto(weights, data) nz_num = np.fromfile(fin, dtype = np.uint32, count = len(layers))
for idx, layer in enumerate(layers):
print "Reconstruct layer", layer
print "Total Non-zero number:", nz_num[idx]
#eg . Reconstruct layer conv1
#Total Non-zero number: 13902
if 'conv' in layer:
bits = 8 #卷积层使用8bit量化,全连接使用4bit
else:
bits = 4
codebook_size = 2 ** bits #所有码字的总数
codebook = np.fromfile(fin, dtype = np.float32, count = codebook_size)
bias = np.fromfile(fin, dtype = np.float32, count = net.params[layer][1].data.size)
np.copyto(net.params[layer][1].data, bias) #把fin里的值拷贝进去,原先net.params[layer][1].data全部都是0 spm_stream = np.fromfile(fin, dtype = np.uint8, count = (nz_num[idx]-1) / (8/bits) + 1)
ind_stream = np.fromfile(fin, dtype = np.uint8, count = (nz_num[idx]-1) / 2+1) binary_to_net(net.params[layer][0].data, spm_stream, ind_stream, codebook, nz_num[idx]) net.save(target)
Deep compression code的更多相关文章
- [综述]Deep Compression/Acceleration深度压缩/加速/量化
Survey Recent Advances in Efficient Computation of Deep Convolutional Neural Networks, [arxiv '18] A ...
- DEEP COMPRESSION小记
2016ICLR最佳论文 Deep Compression: Compression Deep Neural Networks With Pruning, Trained Quantization A ...
- Deep Compression Compressing Deep Neural Networks With Pruning, Trained QuantizationAnd Huffman Coding
转载请注明出处: http://www.cnblogs.com/sysuzyq/p/6200613.html by 少侠阿朱
- 论文翻译:2021_Towards model compression for deep learning based speech enhancement
论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model c ...
- A Full Hardware Guide to Deep Learning
A Full Hardware Guide to Deep Learning Deep Learning is very computationally intensive, so you will ...
- 网络压缩论文集(network compression)
Convolutional Neural Networks ImageNet Models Architecture Design Activation Functions Visualization ...
- cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning 听课笔记
1. 深度学习面临的问题: 1)模型越来越大,很难在移动端部署,也很难网络更新. 2)训练时间越来越长,限制了研究人员的产量. 3)耗能太多,硬件成本昂贵. 解决的方法:联合设计算法和硬件. 计算硬件 ...
- 深度学习网络压缩模型方法总结(model compression)
两派 1. 新的卷机计算方法 这种是直接提出新的卷机计算方式,从而减少参数,达到压缩模型的效果,例如SqueezedNet,mobileNet SqueezeNet: AlexNet-level ac ...
- (zhuan) Where can I start with Deep Learning?
Where can I start with Deep Learning? By Rotek Song, Deep Reinforcement Learning/Robotics/Computer V ...
随机推荐
- android aapt 用法 -- ApkReader
aapt 是android assert packaging tool的缩写,具体如下: 1. 列出apk包的内容 aapt l[ist] [-v] [-a] file.{zip,jar,apk} - ...
- jQuery中的观察者模式(Observer Pattern)
在jQuery中,on方法可以为元素绑定事件,trigger方法可以手动触发事件,围绕这2个方法,我们来体验jQuery中的观察者模式(Observer Pattern). ■ on方法绑定内置事件, ...
- MVC文件上传04-使用客户端jQuery-File-Upload插件和服务端Backload组件实现多文件异步上传
本篇使用客户端jQuery-File-Upload插件和服务端Badkload组件实现多文件异步上传.MVC文件上传相关兄弟篇: MVC文件上传01-使用jquery异步上传并客户端验证类型和大小 ...
- MFC绘制直方图和饼图
转载原文: Normal 0 7.8 磅 0 2 false false false EN-US ZH-CN X-NONE /* Style Definitions */ table.MsoNorma ...
- andriod 获得MP4时长
//获得MP4时长 private int getTimeLong(String videoPath) { MediaMetadataRetriever retr = new MediaMetadat ...
- 【微信小程序】在微信开发工具上七牛云的图片可以看到,但是在真机上看不到的原因解决
在开发微信小程序过程中,在微信开发者工具上,七牛云的图片都可以展示出来,但是在真机上,七牛云的图片却展示不出来,也没有报404找不到或者不能加载图片的问题, 必须保证: 1.图片是用image加载的: ...
- Deployment failure on Tomcat 7.x. Could not copy all resources to
今天在网上部署项目的时候出现在了问题 tomcat一直部署不上 网上查了一下 原因记下来供大家查看 [plain] <span style="font-size:18px;" ...
- PHP命名空间学习笔记
命名空间的支持版本:PHP 5 > 5.3.0,PHP 7 . 什么是命名空间 从广义上来说,命名空间是一种封装事物的方法.在很多地方都可以见到这种抽象概念.例如,在操作系统中目录用来将相关文件 ...
- Coursera课程《Python数据结构》中课件
You can access the Google Drive containing all of the current and in-progress lecture slides for thi ...
- FPGA三段式状态机的思维陷阱
用三段式描述状态机的好处,国内外各位大牛都已经说的很多了,大致可归为以下三点: 1.将组合逻辑和时序逻辑分开,利于综合器分析优化和程序维护; 2.更符合设计的思维习惯; 3.代码少,比一段式状态机更简 ...