题目:

给定两个字符串X,Y,求二者最长的公共子串,例如X=[aaaba],Y=[abaa]。二者的最长公共子串为[aba],长度为3。

子序列是不要求连续的,字串必须是连续的。

思路与代码:

1、简单思想:

  • 遍历两个字符串X、Y,分别比较X的字串与Y的字串,求出最长的公共字串。
  • 设X长度为m,Y长度为n,最长公共字串长度为len,则时间复杂度为O(m*n*len),空间复杂度为O(1)
#include <iostream>
#include <vector> using namespace std; int getComLen(char *str1,char *str2){
int len=;
while(*str1 && *str2){
if(*(str1++)==*(str2++))
len++;
}
return len;
} int LCS1(char *str1,int len1,char *str2,int len2){
int maxlen=; // max length of LCS
int maxIndex=; // start position of LCS
int len;
for(int i=;i<len1;i++){
for(int j=;j<len2;j++){
len=getComLen(str1+i,str2+j);
if(len>maxlen){
maxlen=len;
maxIndex=i;
}
}
}
cout<<"Length of Longest Common Substring: "<<maxlen<<endl;
cout<<"LCS is: ";
for(int i=maxIndex;i<maxIndex+maxlen;i++)
cout<<str1[i];
cout<<endl;
return maxlen;
}
int main()
{
char str1[]="Chinese";
char str2[]="Chienglish";
int len1=sizeof(str1)/sizeof(str1[])-;
int len2=sizeof(str2)/sizeof(str2[])-;
cout << LCS1(str1,len1,str2,len2) << endl;
return ;
}

2、动态规划思想:

  • 与最长字符子序列一样,最长字符字串一样可以通过动态规划来求解,不一样的是,字串是连续的。
  • 假设dp[i][j]来表示以x[i]、y[j]结尾的公共子串长度(不是最长,最长的字串长度需要通过比较得到),由于字串连续,x[i]和y[i]要么与前面的前面的公共字串构成新的字串,要么不能构成公共字串。
  • 公共字串长度的状态转移方程如下:

初始状态:dp[i][j]=0 if i==0 || j==0

转移方程:dp[i][j] = dp[i-1][j-1]+1 if x[i-1]==y[j-1]

dp[i][j] = 0 if x[i-1]!=y[j-1]

  • 最长公共字串长度以及最长公共字串,需要在求公共字串长度的过程中通过比较并记录下来,具体参考代码。
  • 设X长度为m,Y长度为n,最长公共字串长度为len,则时间复杂度为O(m*n),空间复杂度为O(m*n)
#include <iostream>
#include <vector> using namespace std; // dynamic programming
int LCS2(char *str1,int len1,char *str2,int len2){
vector<vector<int> > dp(len1+,vector<int>(len2+,));
int maxlen=; // max length of LCS
int maxIndex=; // start position of LCS
for(int i=;i<=len1;i++){
for(int j=;j<=len2;j++){
if(i== || j==)
dp[i][j]=;
else{
if(str1[i-]==str2[j-])
dp[i][j]=dp[i-][j-]+;
} if(dp[i][j]>maxlen){
maxlen=dp[i][j];
maxIndex=i-maxlen+;
}
}
}
cout<<"Length of Longest Common Substring: "<<maxlen<<endl;
cout<<"LCS is: ";
for(int i=maxIndex-;i<maxIndex-+maxlen;i++)
cout<<str1[i];
cout<<endl;
return maxlen;
} int main()
{
char str1[]="Chinese";
char str2[]="Chienglish";
int len1=sizeof(str1)/sizeof(str1[])-;
int len2=sizeof(str2)/sizeof(str2[])-;
cout << LCS2(str1,len1,str2,len2) << endl;
return ;
}

(字符串)最长公共字串(Longest-Common-SubString,LCS)的更多相关文章

  1. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  2. 最长公共子序列(LCS)问题 Longest Common Subsequence 与最长公告字串 longest common substr

    问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk ...

  3. 最长公共子串算法(Longest Common Substring)

    给两个字符串,求两个字符串的最长子串 (例如:"abc""xyz"的最长子串为空字符串,"abcde"和"bcde"的最 ...

  4. 动态规划 ---- 最长公共子序列(Longest Common Subsequence, LCS)

    分析: 完整代码: // 最长公共子序列 #include <stdio.h> #include <algorithm> using namespace std; ; char ...

  5. 最长公共子序列与最长公共字串 (dp)转载http://blog.csdn.net/u012102306/article/details/53184446

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  6. URAL 1517 Freedom of Choice(后缀数组,最长公共字串)

    题目 输出最长公共字串 #define maxn 200010 int wa[maxn],wb[maxn],wv[maxn],ws[maxn]; int cmp(int *r,int a,int b, ...

  7. Longest Common Substring($LCS$)

    Longest Common Substring(\(LCS\)) 什么是子序列? 子序列就是某一个序列的不连续的一部分. 如图, \(abcde\)就是图中序列的一个子序列. 公共子序列 公共子序列 ...

  8. 最长公共字串算法, 文本比较算法, longest common subsequence(LCS) algorithm

    ''' merge two configure files, basic file is aFile insert the added content of bFile compare to aFil ...

  9. poj 3080 kmp求解多个字符串的最长公共字串,(数据小,有点小暴力 16ms)

    Blue Jeans Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14113   Accepted: 6260 Descr ...

随机推荐

  1. CF1060E Sergey and Subway 思维

    分两种情况讨论 一种为奇数长为$L$的路径,在经过变化后,我们需要走$\frac{L}{2} + 1$步 一种为偶数长为$L$的路径,在变化后,我们需要走$\frac{L}{2}$步 那么,我们只需要 ...

  2. 详解Android基本布局

    一.线性布局 LinearLayout又称为线性布局,是一种非常常用的布局.这个布局会将它包含的控件在线性方向上依次排列.我们可以通过指定它的orientation属性来决定它是垂直方向排列还是水平方 ...

  3. UVALive 6885 Flowery Trails 最短路

    Flowery Trails 题目连接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid= ...

  4. 使用命令行编译和运行 c、Java和python程序

    集成开发环境已经非常方便,从编写程序到执行程序看到结果,让我们不用关心中间的过程.但是使用原始的.命令的方式来将程序编译运行有的时候可能有些用,比如写个简答的程序,或者是身边没有集成工具的时候. C语 ...

  5. 前些日子用css画的大白

    闲来无事用css画的一个大白...其实有一些地方偷懒了用svg去画的,因为用纯几何形状组合去画变化那么复杂的曲线不太现实.但svg曲线坐标还是自己一点点调出来的,没有用工具生成. ps:点击身体的某些 ...

  6. Unity消息

    GameObject关于Message带有三种方法, gameObject.SendMessageUpwards ("test1",4);gameObject.SendMessag ...

  7. BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊 (动态树LCT)

    2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2843  Solved: 1519[Submi ...

  8. winform打开进程与关闭进程

    #region 判断某进程名是否运行 /// <summary> /// 关闭指定名称的进程 /// </summary> /// <param name="p ...

  9. 无法打开文件“atlsd.lib”

    问题: vs2013编译c++代码,错误 15 error LNK1104: 无法打开文件“atlsd.lib” 解决: 在你电脑或者其他人电脑上搜索atlsd.lib,将其拷贝到D:\Program ...

  10. 算法学习 - 平衡二叉查找树实现(AVL树)

    平衡二叉查找树 平衡二叉查找树是非常早出现的平衡树,由于全部子树的高度差不超过1,所以操作平均为O(logN). 平衡二叉查找树和BS树非常像,插入和删除操作也基本一样.可是每一个节点多了一个高度的信 ...