P2261 [CQOI2007]余数求和
题意还是很清晰,很容易理解
1e9范围明显不能暴力,除非你能把常数优化到\(\frac1 {10}\),但我实在想象不到用了这么多取模怎么把常数优化下去
我们可以把\(k\%i\)变成\(k-k/i*i\)(整除)
那么总的和也就从\(\sum_{i=1}^{n}k\%i\)变成了\(\sum_{i=1}^n k-k/i*i\),又可以转化为\(nk-\sum_{i=1}^n k/i*i\)
\(k/i\)的值只有有\(\sqrt k\)种,且相同的值都是连续出现的,所以我们可以直接利用等差数列求\(\sum_{i=1}^n k/i*i\)
下面放代码吧
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cctype>
#define ll long long
#define gc getchar
using namespace std;
inline ll read(){
ll a=0;int f=0;char p=gc();
while(!isdigit(p)){f|=p=='-';p=gc();}
while(isdigit(p)){a=(a<<3)+(a<<1)+(p^48);p=gc();}
return f?-a:a;
}ll n,k,ans;
int main(){
n=read();k=read();
for(int l=1,r;l<=n;l=r+1){
if(k/l)r=min(k/(k/l),n);
else r=n;
ans+=k/l*(r-l+1)*(l+r)/2;
}
ans=n*k-ans;
printf("%lld\n",ans);
return 0;
}
不要抄袭哦
P2261 [CQOI2007]余数求和的更多相关文章
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- 洛谷——P2261 [CQOI2007]余数求和
P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...
- [Luogu P2261] [CQOI2007]余数求和 (取模计算)
题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...
- P2261 [CQOI2007]余数求和 【整除分块】
一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$ ...
- [洛谷P2261] [CQOI2007]余数求和
洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...
- 洛谷P2261 [CQOI2007] 余数求和 [数论分块]
题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...
- P2261 [CQOI2007]余数求和 (数论)
题目链接:传送门 题目: 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod + k mod + k mod + … + k mod n的值,其中k mod i表示k ...
- 洛谷 P2261 [CQOI2007]余数求和
洛谷 一看就知道是一个数学题.嘿嘿- 讲讲各种分的做法吧. 30分做法:不知道,这大概是这题的难点吧! 60分做法: 一是直接暴力,看下代码吧- #include <bits/stdc++.h& ...
- P2261 [CQOI2007]余数求和[整除分块]
题目大意 给出正整数 n 和 k 计算 \(G(n, k)=k\ \bmod\ 1 + k\ \bmod\ 2 + k\ \bmod\ 3 + \cdots + k\ \bmod\ n\) 的值 其中 ...
- 【洛谷】P2261 [CQOI2007]余数求和
题面?? 点我获得题面QAQ 我这个咕儿终于在csp初赛前夕开始学习数论了! 我是绝对不会承认之前不学数学是因为去年刚开始学OI的时候就跟yyq他们学莫比乌斯反演然后自闭的 分析 对于k mod i, ...
随机推荐
- 开源项目CIIP(企业信息管理系统框架).2018.0904版更新介绍
源码: https://github.com/tylike/CIIP https://gitee.com/ciip/CIIP 一,CIIP的目标是什么? 更加简单,快速的建立信息类管理系统.让实施人员 ...
- maven scope属性值设置含义
1.枚举各个属性值的含义 compile,缺省值,适用于所有阶段,会打包进项目. provided,类似compile,期望JDK.容器或使用者会提供这个依赖. runtime,只在运行时使用,如JD ...
- Hyperledger Fabric CA User’s Guide——概述(二)
概述 下面的图表说明了如何将Hyperledger Fabric CA与总体的Hyperledger Fabric结构相匹配. 有两种方式与一种Hyperledger Fabric CA服务器进行交互 ...
- Docker持久化存储与数据共享
一.Docker持久化数据的方案 基于本地文件系统的Volume:可以在执行docker create或docker run时,通过-v参数将主机的目录作为容器的数据卷.这部分功能便是基于本地文件系统 ...
- Linux加密到K8S中
文件名字 test.conf 加密: base64 --wrap=0 aaa.conf 把得到的密钥填入配置文件当中即可
- 机器学习算法 --- SVM (Support Vector Machine)
一.SVM的简介 SVM(Support Vector Machine,中文名:支持向量机),是一种非常常用的机器学习分类算法,也是在传统机器学习(在以神经网络为主的深度学习出现以前)中一种非常牛X的 ...
- 关于手机端h5上传图片配合exif.min.js,processImg.js的使用
首先这里有个new FileReader()的概念,这是h5新增的,用来把文件读入内存,并且读取文件中的数据.FileReader接口提供了一个异步API,使用该API可以在浏览器主线程中异步访问文件 ...
- Scrum立会报告+燃尽图(十二月九日总第四十次):视频剪辑与用户反馈
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2484 项目地址:https://git.coding.net/zhang ...
- Daily Scrumming* 2015.10.28(Day 9)
一.总体情况总结 今日项目总结: 1.前后端同一了API设计以及API权限认证.用户状态保存的开发方案 2.API以及后端模型已经开始开发,前端UEditor开始学习,本周任务有良好的起步 3.前后端 ...
- 在Windows下制作静态库和动态库
一:静态库的创建 VC++6.0中new一个的为win32 static library工程,之后有二个选项.根据需求选吧. 具体的类或者函数的添加过程和标准的工程一样,直接创建新的类或者添加新 的. ...