我是题面

题意还是很清晰,很容易理解

1e9范围明显不能暴力,除非你能把常数优化到\(\frac1 {10}\),但我实在想象不到用了这么多取模怎么把常数优化下去

我们可以把\(k\%i\)变成\(k-k/i*i\)(整除)

那么总的和也就从\(\sum_{i=1}^{n}k\%i\)变成了\(\sum_{i=1}^n k-k/i*i\),又可以转化为\(nk-\sum_{i=1}^n k/i*i\)

\(k/i\)的值只有有\(\sqrt k\)种,且相同的值都是连续出现的,所以我们可以直接利用等差数列求\(\sum_{i=1}^n k/i*i\)

下面放代码吧

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cctype>
#define ll long long
#define gc getchar
using namespace std; inline ll read(){
ll a=0;int f=0;char p=gc();
while(!isdigit(p)){f|=p=='-';p=gc();}
while(isdigit(p)){a=(a<<3)+(a<<1)+(p^48);p=gc();}
return f?-a:a;
}ll n,k,ans; int main(){
n=read();k=read();
for(int l=1,r;l<=n;l=r+1){
if(k/l)r=min(k/(k/l),n);
else r=n;
ans+=k/l*(r-l+1)*(l+r)/2;
}
ans=n*k-ans;
printf("%lld\n",ans);
return 0;
}

不要抄袭哦

P2261 [CQOI2007]余数求和的更多相关文章

  1. 洛谷 P2261 [CQOI2007]余数求和 解题报告

    P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...

  2. 洛谷——P2261 [CQOI2007]余数求和

    P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...

  3. [Luogu P2261] [CQOI2007]余数求和 (取模计算)

    题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...

  4. P2261 [CQOI2007]余数求和 【整除分块】

    一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$  ...

  5. [洛谷P2261] [CQOI2007]余数求和

    洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...

  6. 洛谷P2261 [CQOI2007] 余数求和 [数论分块]

    题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...

  7. P2261 [CQOI2007]余数求和 (数论)

    题目链接:传送门 题目: 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod + k mod + k mod + … + k mod n的值,其中k mod i表示k ...

  8. 洛谷 P2261 [CQOI2007]余数求和

    洛谷 一看就知道是一个数学题.嘿嘿- 讲讲各种分的做法吧. 30分做法:不知道,这大概是这题的难点吧! 60分做法: 一是直接暴力,看下代码吧- #include <bits/stdc++.h& ...

  9. P2261 [CQOI2007]余数求和[整除分块]

    题目大意 给出正整数 n 和 k 计算 \(G(n, k)=k\ \bmod\ 1 + k\ \bmod\ 2 + k\ \bmod\ 3 + \cdots + k\ \bmod\ n\) 的值 其中 ...

  10. 【洛谷】P2261 [CQOI2007]余数求和

    题面?? 点我获得题面QAQ 我这个咕儿终于在csp初赛前夕开始学习数论了! 我是绝对不会承认之前不学数学是因为去年刚开始学OI的时候就跟yyq他们学莫比乌斯反演然后自闭的 分析 对于k mod i, ...

随机推荐

  1. 斐讯K2 PSG1218 刷机教程 基于Breed互刷 清除配置

    Padavan官方论坛http://www.right.com.cn/forum/thread-161324-1-1.html Breed官方文档http://www.right.com.cn/for ...

  2. Jenkins持续部署

    Jenkins持续部署 Jenkins提供很好的连续部署和交付的支持.看一下部署任何软件开发的流程,将如下图所示. 连续部署的主要部分,是确保其上面所示的整个过程是自动化的.Jenkins实现所有这些 ...

  3. 如何在忘记mysql的登录密码时更改mysql登录的密码(window及linux)

    最近一直在边学习边开发java项目,理所当然的就少不了跟数据库打交道了,但是有时候就会脑子一短路,把mysql的登录密码给忘记了,这个时候我们又很急切的需要进到数据库中查看数据,那这个时候要怎么才能改 ...

  4. mysql删除表中的记录

    大家都知道,在MySQL中删除一个表中的记录有两种方法,一种是DELETE FROM TABLENAME WHERE... , 还有一种是TRUNCATE TABLE TABLENAME. DELET ...

  5. https、ssl、tls协议学习

    一.知识准备 1.ssl协议:通过认证.数字签名确保完整性:使用加密确保私密性:确保客户端和服务器之间的通讯安全 2.tls协议:在SSL的基础上新增了诸多的功能,它们之间协议工作方式一样 3.htt ...

  6. Xiuno BBS 4.0 修改时间显示

    修罗开源轻论坛程序 - Xiuno BBS 4.0Xiuno BBS 4.0 是一款轻论坛产品,前端基于 BootStrap 4.0.JQuery 3,后端基于 PHP/7 MySQL XCache/ ...

  7. Java 的 java_home, path, classpath

    java_home: 指定 jdk 的安装目录. 第三方软件 Eclipse / Tomcat 在 java_home 指定的目录下查找安装好的 jdk. path: 配置 jdk 的安装目录.在命令 ...

  8. Final冲刺贡献分

    小组名称:Hello World! 项目名称:空天猎 组长:陈建宇 成员:刘成志.刘耀泽.刘淑霞.黄泽宇.方铭.贾男男 一.贡献分数规则: (1)基础分:5 , 4 ,4 , 3 , 2 ,2 ,1. ...

  9. sql索引的填充因子多少最好,填充因子有什么用

    和索引重建最相关的是填充因子.当创建一个新索引,或重建一个存在的索引时,你可以指定一个填充因子,它是在索引创建时索引里的数据页被填充的数量.填充因子设置为100意味着每个索引页100%填满,50%意味 ...

  10. Week 2

    第1章:概论1.原文“这些软件企业的商业模式有些事合情合理也合法:有些看似合情合理,但不怎么合法:有些做法不合 理,但是还没有出台相关的法律.在相关法律完善之前,软件行业还有一个行规,即应该有职业道德 ...