注意到n很小,考虑枚举i。现在要求的是f(n,m)=Σφ(in) (i=1~m)。显然当n没有平方因子时,φ(in)=φ(i)·φ(n/gcd(i,n))·gcd(i,n)。利用φ*1=id又可得φ(i,n)=φ(i)·Σφ(n/d) (d|gcd(i,n))。改为枚举d就可以得到f(n,m)=Σφ(n/d)*f(d,m/d) (d|n),记忆化搜索求解。n有平方因子时可以发现只要把平方因子提出来最后再乘上就行了,除去平方因子的数可以线性筛得到。

  当n=1时无法继续递归,答案即为φ的前缀和,杜教筛即可。复杂度应该是O(n√m+m2/3)左右,不是很会证。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<map>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 100010
#define P 1000000007
int n,m,prime[N<<],phi[N<<],p[N<<],ans=,cnt=;
bool flag[N<<];
map<int,int> f,g[N];
int getphi(int n)
{
if (n<(N<<)) return phi[n];
if (f[n]) return f[n];
int s=1ll*n*(n+)/%P;
for (int i=;i<=n;i++)
{
int t=n/(n/i);
s=(s-1ll*(t-i+)*getphi(n/i)%P+P)%P;
i=t;
}
return f[n]=s;
}
int calc(int n,int m)
{
if (!m) return ;
if (n==) return getphi(m);
if (g[n][m]) return g[n][m];
int x=n,s=;n=p[n];
for (int i=;i*i<=n;i++)
if (n%i==)
{
s=(s+1ll*(getphi(n/i)-getphi(n/i-)+P)*calc(i,m/i)%P)%P;
if (i*i<n) s=(s+1ll*(getphi(i)-getphi(i-)+P)*calc(n/i,m/(n/i))%P)%P;
}
s=1ll*s*(x/n)%P;
return g[n][m]=s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3512.in","r",stdin);
freopen("bzoj3512.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
flag[]=,phi[]=,p[]=;
for (int i=;i<(N<<);i++)
{
if (!flag[i]) prime[++cnt]=i,phi[i]=i-,p[i]=i;
for (int j=;j<=cnt&&prime[j]*i<(N<<);j++)
{
flag[prime[j]*i]=;
if (i%prime[j]==) {phi[prime[j]*i]=phi[i]*prime[j];p[prime[j]*i]=p[i];break;}
else phi[prime[j]*i]=phi[i]*(prime[j]-),p[prime[j]*i]=p[i]*prime[j];
}
}
for (int i=;i<(N<<);i++) phi[i]=(phi[i-]+phi[i])%P;
for (int i=;i<=n;i++)
ans=(ans+calc(i,m))%P;
cout<<ans;
return ;
}

BZOJ3512 DZY Loves Math IV(杜教筛+线性筛)的更多相关文章

  1. BZOJ 3512: DZY Loves Math IV [杜教筛]

    3512: DZY Loves Math IV 题意:求\(\sum_{i=1}^n \sum_{j=1}^m \varphi(ij)\),\(n \le 10^5, m \le 10^9\) n较小 ...

  2. 【bzoj3512】DZY Loves Math IV 杜教筛+记忆化搜索+欧拉函数

    Description 给定n,m,求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\varphi(ij)\)模10^9+7的值. Input 仅一行,两个整数n,m. Output 仅 ...

  3. BZOJ3512 DZY Loves Math IV

    解:这又是什么神仙毒瘤题...... 我直接把后面那个phi用phi * I = id反演一波,得到个式子,然后推不动了...... 实际上第一步我就大错特错了.考虑到n很小,我们有 然后计算S,我们 ...

  4. 【BZOJ3512】DZY Loves Math IV(杜教筛)

    [BZOJ3512]DZY Loves Math IV(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\sum_{j=1}^m\varphi(ij)\] 其中\(n\le 10^5,m\l ...

  5. bzoj 3512: DZY Loves Math IV【欧拉函数+莫比乌斯函数+杜教筛】

    参考:http://blog.csdn.net/wzf_2000/article/details/54630931 有这样一个显然的结论:当\( |\mu(n)|==1 \)时,\( \phi(nk) ...

  6. ●BZOJ 3512 DZY Loves Math IV

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3512 题解: $$求ANS=\sum_{i=1}^{N}\sum_{j=1}^{M}\phi ...

  7. 【刷题】BZOJ 3512 DZY Loves Math IV

    Description 给定n,m,求 模10^9+7的值. Input 仅一行,两个整数n,m. Output 仅一行答案. Sample Input 100000 1000000000 Sampl ...

  8. bzoj 3512: DZY Loves Math IV

    Description 给定n,m,求 模10^9+7的值. Solution 设 \(S(n,m)\) 表示 \(\sum_{i=1}^{m}\phi(n*i)\) \(Ans=\sum_{i=1} ...

  9. BZOJ3512:DZY Loves Math IV

    传送门 Sol 好神仙的题目.. 一开始就直接莫比乌斯反演然后就 \(GG\) 了 orz 题解 permui 枚举 \(n\),就是求 \(\sum_{i=1}^{n}S(i,m)\) 其中\(S( ...

随机推荐

  1. [PLC]ST语言七:MOV_SMOV_CML_BMOV_FMOV_XCH_BCD_BIN

    一:MOV/SMOV/CML/BMOV/FMOV/XCH/BCD/BIN 说明:简单的顺控指令不做其他说明. (MOV)控制要求:无 (MOV)编程梯形图: (MOV)结构化编程ST语言: (*传送指 ...

  2. Ubuntu根目录下各文件夹的作用

    Ubuntu上常识和常用命令: 1.Ubuntu文件结构 在ubuntu上硬盘的目录和Windows上不同,Windows可以根据自己的需求分不同的盘符,但ubuntu上只有一个盘,从根目录开始每个目 ...

  3. 详解YUV420数据格式

    原文地址:http://www.cnblogs.com/azraelly/archive/2013/01/01/2841269.html 1. YUV简介 YUV定义:分为三个分量,“Y”表示明亮度( ...

  4. Socket之简单的Unity3D聊天室__TCP协议

    服务器端程序 using System; using System.Collections.Generic; using System.Linq; using System.Net; using Sy ...

  5. java IO流 对文件操作的代码集合

    Io流 按照分类 有两种分类 流向方向: 有输入流和输出流 按照操作类型有:字节流和字符流 按照流向方向 字节流的一些操作 //读文件 FileInputStream fis = new FileIn ...

  6. vue 使用ref获取DOM元素和组件引用

    在vue中可以通过ref获取dom元素,并操作它,还可以获取组件里面的数据和方法. HTML部分: <div id="app"> <input type=&quo ...

  7. maven摘除jar包中配置文件

    <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-jar-p ...

  8. Acer 4750G安装OS X 10.9 DP4(简版)

    一.下载os x 10.9懒人版:http://bbs.pcbeta.com/viewthread-1384504-1-1.html 二.用系统自带的磁盘分区工具划分一个5G左右的临时安装盘(新建分区 ...

  9. nginx keepalived 高可用方案(转)

    转自: https://www.cnblogs.com/leeSmall/p/9356535.html 一.Nginx Rewrite 规则 1. Nginx rewrite规则 Rewrite规则含 ...

  10. 前端_html

    目录 HTML介绍 标签说明 常用标签 <!DOCTYPE>标签 <head>内常用标签 <body>内常用标签 特殊字符 其他:各种各样的标签 HTML的规范 H ...