奔小康赚大钱

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2129    Accepted Submission(s): 923

Problem Description
传说在遥远的地方有一个非常富裕的村落,有一天,村长决定进行制度改革:重新分配房子。
这可是一件大事,关系到人民的住房问题啊。村里共有n间房间,刚好有n家老百姓,考虑到每家都要有房住(如果有老百姓没房子住的话,容易引起不安定因素),每家必须分配到一间房子且只能得到一间房子。
另一方面,村长和另外的村领导希望得到最大的效益,这样村里的机构才会有钱.由于老百姓都比较富裕,他们都能对每一间房子在他们的经济范围内出一定的价格,比如有3间房子,一家老百姓可以对第一间出10万,对第2间出2万,对第3间出20万.(当然是在他们的经济范围内).现在这个问题就是村领导怎样分配房子才能使收入最大.(村民即使有钱购买一间房子但不一定能买到,要看村领导分配的).
 
Input
输入数据包含多组测试用例,每组数据的第一行输入n,表示房子的数量(也是老百姓家的数量),接下来有n行,每行n个数表示第i个村名对第j间房出的价格(n<=300)。
 
Output
请对每组数据输出最大的收入值,每组的输出占一行。

 
Sample Input
2
100 10
15 23
 
Sample Output
123
 
Source
 
Recommend
lcy
 
 
 
 
 
里面有解释。
 
网上也好多KM算法的讲解。
 
 
不管了,会用就行了,套模板
 #include <stdio.h>
#include <algorithm>
#include <string.h>
#include <iostream>
using namespace std; /* KM算法
* 复杂度O(nx*nx*ny)
* 求最大权匹配
* 若求最小权匹配,可将权值取相反数,结果取相反数
* 点的编号从0开始
*/
const int N = ;
const int INF = 0x3f3f3f3f;
int nx,ny;//两边的点数
int g[N][N];//二分图描述
int linker[N],lx[N],ly[N];//y中各点匹配状态,x,y中的点标号
int slack[N];
bool visx[N],visy[N]; bool DFS(int x)
{
visx[x] = true;
for(int y = ; y < ny; y++)
{
if(visy[y])continue;
int tmp = lx[x] + ly[y] - g[x][y];
if(tmp == )
{
visy[y] = true;
if(linker[y] == - || DFS(linker[y]))
{
linker[y] = x;
return true;
}
}
else if(slack[y] > tmp)
slack[y] = tmp;
}
return false;
}
int KM()
{
memset(linker,-,sizeof(linker));
memset(ly,,sizeof(ly));
for(int i = ;i < nx;i++)
{
lx[i] = -INF;
for(int j = ;j < ny;j++)
if(g[i][j] > lx[i])
lx[i] = g[i][j];
}
for(int x = ;x < nx;x++)
{
for(int i = ;i < ny;i++)
slack[i] = INF;
while(true)
{
memset(visx,false,sizeof(visx));
memset(visy,false,sizeof(visy));
if(DFS(x))break;
int d = INF;
for(int i = ;i < ny;i++)
if(!visy[i] && d > slack[i])
d = slack[i];
for(int i = ;i < nx;i++)
if(visx[i])
lx[i] -= d;
for(int i = ;i < ny;i++)
{
if(visy[i])ly[i] += d;
else slack[i] -= d;
}
}
}
int res = ;
for(int i = ;i < ny;i++)
if(linker[i] != -)
res += g[linker[i]][i];
return res;
}
//HDU 2255
int main()
{
int n;
while(scanf("%d",&n) == )
{
for(int i = ;i < n;i++)
for(int j = ;j < n;j++)
scanf("%d",&g[i][j]);
nx = ny = n;
printf("%d\n",KM());
}
return ;
}
 
 
 
 

HDU 2255 奔小康赚大钱 (KM算法 模板题)的更多相关文章

  1. HDU - 2255 奔小康赚大钱 KM算法 模板题

    HDU - 2255 题意: 分配n所房子给n个家庭,不同家庭对一所房子所需缴纳的钱是不一样的,问你应当怎么分配房子,使得最后收到的钱最多. 思路: KM算法裸题.上模板 #include <i ...

  2. hdu 2255 奔小康赚大钱--KM算法模板

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2255 题意:有N个人跟N个房子,每个人跟房子都有一定的距离,现在要让这N个人全部回到N个房子里面去,要 ...

  3. hdu 2255奔小康赚大钱 KM算法模板

    题目链接:http://acm.hdu.edu.cn/showproblem.php? pid=2255 一,KM算法:(借助这个题写一下个人对km的理解与km模板) KM算法主要是用来求解图的最优匹 ...

  4. hdu 2255 奔小康赚大钱 KM算法

    看到这么奇葩的题目名我笑了,后来这么一个裸的KM调了2小时我哭了…… 这是个裸的KM算法,也没什么多说的,主要是注意多组数据时,每次都要把各种数组清空啊,赋值啊什么的,反正比较麻烦.至于为什么调了2小 ...

  5. HDU 2255 奔小康赚大钱 KM算法的简单解释

    KM算法一般用来寻找二分图的最优匹配. 步骤: 1.初始化可行标杆 2.对新加入的点用匈牙利算法进行判断 3.若无法加入新编,修改可行标杆 4.重复2.3操作直到找到相等子图的完全匹配. 各步骤简述: ...

  6. HDU 2255 奔小康赚大钱 KM算法题解

    KM算法求的是完备匹配下的最大权匹配,是Hungary算法的进一步,由于Hungary算法是最大匹配的算法,不带权. 经典算法,想不出来的了,要參考别人的.然后消化吸收吧. 由于真的非常复杂的算法. ...

  7. hdu 2255 奔小康赚大钱 (KM)

    奔小康赚大钱Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  8. HDU 2255 奔小康赚大钱 KM裸题

    #include <stdio.h> #include <string.h> #define M 310 #define inf 0x3f3f3f3f int n,nx,ny; ...

  9. 二分图最大权匹配问题&&KM算法讲解 && HDU 2255 奔小康赚大钱

    作者:logosG 链接:https://www.cnblogs.com/logosG/p/logos.html (讲解的KM算法,特别厉害!!!) KM算法: 现在我们来考虑另外一个问题:如果每个员 ...

  10. HDU 2255 奔小康赚大钱(带权二分图最大匹配)

    HDU 2255 奔小康赚大钱(带权二分图最大匹配) Description 传说在遥远的地方有一个非常富裕的村落,有一天,村长决定进行制度改革:重新分配房子. 这可是一件大事,关系到人民的住房问题啊 ...

随机推荐

  1. window下查杀占用端口的进程

    一. 查找占用的端口进程号,比如8080 C:> netstat –ano|findstr 8080 C:\Users\chry>netstat -ano | findstr 8080 T ...

  2. python爬虫之requests库介绍(二)

    一.requests基于cookie操作 引言:有些时候,我们在使用爬虫程序去爬取一些用户相关信息的数据(爬取张三“人人网”个人主页数据)时,如果使用之前requests模块常规操作时,往往达不到我们 ...

  3. linux 修改文件最大数

    ulimit -a 查看所有 open files (-n) 1024 是linux操作系统对一个进程打开的文件句柄数量的限制(也包含打开的套接字数量) ulimit -SHn 10000 ##临时修 ...

  4. [Lua] 尾调用消除(tail-call elimination)

    <Lua程序设计(第2版)> 6.3 正确的尾调用(proper tail call) Lua是支持尾调用消除(tail-call elimination)的,如下面对函数g的调用就是尾调 ...

  5. 拦截器 应用详解--SpringMVC

    在实际项目中,拦截器的使用是非常普遍的,例如在购物网站中通过拦截器可以拦截未登录的用户,禁止其购买商品,或者使用它来验证已登录用户是否有相应的操作权限等,Spring MVC提供了拦截器功能,通过配置 ...

  6. python装饰器(披着羊皮的狼)

    python装饰器的作用是在不改变原有函数的基础上,对函数的功能进行增加或者修改. 装饰器语法是python语言更加优美且避免很多繁琐的事情,flask中配置路由的方式便是装饰器. 首先python中 ...

  7. vue mock(模拟后台数据) 最简单实例(一)——适合小白

    开发是前后端分离,不需要等待后台开发.前端自己模拟数据,经本人测试成功. 我们在根目录新建存放数据的json文件,存放我们的数据data.json //data.json{ "status& ...

  8. docker入门使用教程

    Docker概念 Docker是开发人员和系统管理员 使用容器开发,部署和运行应用程序的平台.使用Linux容器部署应用程序称为容器化.容器不是新的,但它们用于轻松部署应用程序. 容器化越来越受欢迎, ...

  9. 华为笔试——C++最高分问题

    题目介绍:现在输入一组数据,写入学生的考试分数.已知学生数为N,学生编号为1到N,且0<N<=30000,每个学生都有一个分数:操作数为M且0<M<5000.输入第一行为N M ...

  10. vmware安装androidx86 (FreeBSD) 系统图解

    有时候自己手机的一些方面限制的因素,我们需要在电脑上装一个“手机”,来完成我们想要做的事情. 安装步骤如下: 首先需要一个ISO系统镜像,下面地址可以提供大量镜像下载: https://zh.osdn ...