题目链接

BZOJ

题解

拉格朗日乘数法

拉格朗日乘数法用以求多元函数在约束下的极值

我们设多元函数\(f(x_1,x_2,x_3,\dots,x_n)\)

以及限制\(g(x_1,x_2,x_3,\dots,x_n) = E\)

我们需要求\(f\)在限制\(g\)下的极值

如图



当\(f\)取到最值时,必然与\(g\)的等高线相切

所以我们只需找出这个切点

切点处两函数的梯度向量平行\({\nabla f~//~\nabla g}\)

梯度向量的每一维就是该维下的偏导函数

\[{\nabla f=(\frac{\partial f}{\partial x_1},\frac{\partial f}{\partial x_2},\frac{\partial f}{\partial x_3},\dots,\frac{\partial f}{\partial x_n})}
\]

偏导可以理解为把别的变量看做常数,只对一个变量求导

所以只需令

\[\nabla f = \lambda \nabla g
\]

可以得到\(n\)个方程,加上\(g\)本身就是一个方程

可以得到\(n + 1\)个方程,可解\(\lambda\)以及\(x_i\)

本题

限制是

\[\sum\limits_{i = 1}^{n}s_ik_i(v_i - v'_i)^{2} = E
\]

我们要最小化

\[\sum\limits_{i = 1}^{n}\frac{s_i}{v_i}
\]

利用拉格朗日乘数法,我们求出\(n + 1\)个方程

对于变量\(x_i\)的偏导,可得到方程

\[2\lambda k_iv_i^{2}(v_i - v'_i) = -1
\]

首先\(v_i \ge v'_i\),所以除\(\lambda\)外左边是正的,所以\(\lambda\)是负的,然后可以发现\(v_i\)关于\(\lambda\)单调

而方程

\[\sum\limits_{i = 1}^{n}s_ik_i(v_i - v'_i)^{2} = E
\]

左边也关于\(v_i\)单调,所以可以使用二分求解

当然求\(v_i\)也可以用牛顿迭代

还有就是精度要开够大。。

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 10005,maxm = 100005;
const double eps = 1e-13,INF = 1e12;
int n;
double E,v1[maxn],v[maxn],s[maxn],k[maxn];
inline double f(int i,double lam){
return 2 * lam * k[i] * v[i] * v[i] * (v[i] - v1[i]) + 1;
}
inline double cal(double lam){
REP(i,n){
double l = max(v1[i],0.0),r = INF;
while (r - l > eps){
v[i] = (l + r) / 2.0;
if (f(i,lam) >= 0) l = v[i];
else r = v[i];
}
v[i] = l;
}
double re = 0;
REP(i,n) re += s[i] * k[i] * (v[i] - v1[i]) * (v[i] - v1[i]);
return re;
}
int main(){
scanf("%d%lf",&n,&E);
REP(i,n) scanf("%lf%lf%lf",&s[i],&k[i],&v1[i]);
double l = -INF,r = 0,mid;
while (r - l > eps){
mid = (l + r) / 2.0;
if (cal(mid) >= E) r = mid;
else l = mid;
}
cal(l);
double ans = 0;
REP(i,n) ans += s[i] / v[i];
printf("%.10lf\n",ans);
return 0;
}

BZOJ2876 [Noi2012]骑行川藏 【拉格朗日乘数法】的更多相关文章

  1. [BZOJ2876][NOI2012]骑行川藏(拉格朗日乘数法)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2876 分析:就是要求约束条件下函数的极值,于是拉格朗日乘数列方程,发现化简后的关于vi ...

  2. bzoj 2876: [Noi2012]骑行川藏 拉格朗日数乘

    2876: [Noi2012]骑行川藏 Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1033  Solved: ...

  3. bzoj2876 [NOI2012]骑行川藏(拉格朗日乘数法)

    题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行 ...

  4. bzoj2876 [Noi2012]骑行川藏

    Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...

  5. [NOI2012]骑行川藏——拉格朗日乘子法

    原题链接 不会啊,只好现学了拉格朗日乘子法,简单记录一下 前置芝士:拉格朗日乘子法 要求\(n\)元目标函数\(f(x_1,x_2,...,x_n)\)的极值,且有\(m\)个约束函数形如\(h_i( ...

  6. bzoj 2876: [Noi2012]骑行川藏【拉格朗日乘数法+二分】

    详见: http://blog.csdn.net/popoqqq/article/details/42366599 http://blog.csdn.net/whzzt/article/details ...

  7. 题解 洛谷 P2179 【[NOI2012]骑行川藏】

    题意为在满足\(\sum\limits_{i=1}^nk_i(v_i-v_i^\prime)^2s_i\leqslant E_U\)的条件下最小化\(\sum\limits_{i=1}^n\frac{ ...

  8. 2876: [Noi2012]骑行川藏 - BZOJ

    Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...

  9. 【BZOJ】2876: [Noi2012]骑行川藏

    题意 给出\(s_i, k_i, v_i', E\),满足\(\sum_{i=1}^{n} k_i s_i ( v_i - v_i' )^2 \le E, v_i > v_i'\),最小化$ \ ...

随机推荐

  1. Vuejs 使用 lib 库模式打包 umd 解决 NPM 包发布的问题

    由于升级了 v0.2 版 GearCase 使用打包工具从 parcel 更换成 vue-cli 3.x.因此打包后发布 NPM 包的方式与之前有很大的差异,这也导致了在发布完 GearCase v0 ...

  2. Java中&、|、&&、||详解

    1.Java中&叫做按位与,&&叫做短路与,它们的区别是: & 既是位运算符又是逻辑运算符,&的两侧可以是int,也可以是boolean表达式,当&两侧 ...

  3. python2.7 倒计时

    From: http://www.vitostack.com/2016/06/05/python-clock/#more Python公告 Python 发布了一个网站 http://pythoncl ...

  4. React Native (0.57)开发环境搭建(注意:Node不要随便更新到最新版,更新完后莫名其妙的问题一大堆)

    搭建开发环境 一.安装依赖 必须安装的依赖有:Node.Watchman 和 React Native 命令行工具以及 Xcode. 1.首先安装 Homebrew 2.安装 Node, Watchm ...

  5. 三维空间中xoy平面上特定抛物线的正等测投影解析解的一种求法

    背景 背景:为锻炼代同学,老师给了她一个反向工程微信"跳一跳"小游戏的任务,希望做一个一样的出来.跳一跳中,有方块,有小人,小人站在方块上. 这个游戏的玩法是,用手指按住手机屏幕, ...

  6. Notes of Daily Scrum Meeting(11.15)

    Notes of Daily Scrum Meeting(11.15) 今天周六我们的主要工作是把这周落下的一些工作补回来,这是写程序的最后阶段,准备进入测试阶段了,所以之前的工作 要补齐,今天大家的 ...

  7. Alpha阶段展示报告

    一.团队成员简介与个人博客地址 江昊,项目经理 http://www.cnblogs.com/haoj/ 王开,后端开发 http://www.cnblogs.com/wk1216123/ 王春阳,后 ...

  8. 什么是REST编程

    参考:什么是REST编程:http://www.ruanyifeng.com/blog/2011/09/restful.html 一.REST是Representational State Trans ...

  9. android实战开发02

    正如我之前提到的,我想的是网页来进行测试发布是有较大难度的,但是我高兴的看到我的好友limary已经熬出头了,之后我会关注他的进度的,感谢他给我的鼓励和启发.现在我要讲讲我的天才运算器V2.0版. 在 ...

  10. 1、数据库与excel表格的数据导入导出

    1.居民用户界面中,excel数据导入导出: 2.其他5张表数据显示到本角色主页的container容器中.