\(\textbf{天下事有难易乎?为之,则难者亦易矣 不为,则易者亦难矣------《为学》}\)

(中国第59届国际数学奥林匹克国家集训队2018.3.20日测试题)
证明:存在常数\(C>0\)使得对于任意的正整数\(m\),以及任意\(m\)个正整数\(a_1,a_2,\cdots,a_m\),都有
\(H(a_1)+H(a_2)+\cdots+H(a_m)\le C\left(\sum\limits_{k=1}^m{ka_k}\right)^{\frac{1}{2}}\),其中\(H(n)=\sum\limits_{k=1}^{n}{\dfrac{1}{k}}\)

证明:存在.\(C=2\)满足要求.记\(\{a_1,a_2,\cdots,a_m\}=\{b_1,b_2\cdots,b_m\}\)其中\(b_1\ge b_2\ge \cdots \ge b_m\)
\[\begin{align*}
LHS&=\dfrac{1}{1}+\dfrac{1}{2}+\cdots+\dfrac{1}{b_1}+\dfrac{1}{1}+\dfrac{1}{2}+\cdots+\dfrac{1}{b_2}
+\dfrac{1}{1}+\dfrac{1}{2}+\cdots+\dfrac{1}{b_m}\\
& \le m\left(\dfrac{1}{1}+\dfrac{1}{2}+\cdots+\dfrac{1}{b_m}\right) \\
& \le m\sqrt{(1^2+1^2+\cdots 1^2)(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\cdots+\dfrac{1}{b_m^2})}\quad(\textbf{此处用到柯西不等式})\\
&\le m\sqrt{b_m\cdot(1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}\cdots+\dfrac{1}{b_m-1}-\dfrac{1}{b_m})} \quad (\textbf{此处用到}\dfrac{1}{k^2}\le\dfrac{1}{k-1}-\dfrac{1}{k})\\
&=m\sqrt{2b_m-1}\\
RHS&=C\sqrt{1a_1+2a_2+\cdots+ma_m}\\
&\ge C\sqrt{(1+2+\cdots m)b_m}\\
&=C\sqrt{\dfrac{m(m+1)}{2}b_m}
\end{align*}\]
取\(C=2\)时 $ 2\sqrt{\dfrac{m(m+1)}{2}b_m}\ge m\sqrt{2b_m-1}$显然成立.

MT【140】是否存在常数$\textbf{C}$的更多相关文章

  1. MT【319】分段递推数列

    已知数列$ x_n $满足$ 0<x_1<x_2<\pi $,且\begin{equation*} x_{n+1}= \left\{ \begin{aligned}x_n+\sin ...

  2. MT【142】Bachet 问题,进位制

    问题: 满足下面两种限制条件下要想称出40以内的任何整数重量,最少要几个砝码: i)如果砝码只能在天平的某一边; ii)如果砝码可以放在天平的两边. 提示:对于 i)先证明如下事实: \[\textb ...

  3. 多点触摸(MT)协议(翻译)

    参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...

  4. php 截取代码方法(140个字后的。)

    //截取摘要public static function mbsubstr($str){    $strleng = mb_strlen($str,"utf8");    $mbs ...

  5. 课堂Beta发布140字评论

    Beta发布140字评论: 第一组:飞天小女警 此项目组的功能是礼物挑选,创意十足,用户只要一听名字便会被深深吸引,并且页面设计感,时尚感十足,不断吸引客户的眼球,而且发布到云服务器上面. 第二组:金 ...

  6. /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题

    一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C ...

  7. MT写的对URL操作的两个方法

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. iOS开发之----常用函数和常数

    介绍一下Objective-c常用的函数,常数变量 算术函数 [算术函数] 函数名 说明 int rand() 随机数生成.(例)srand(time(nil)); //随机数初期化int val = ...

  9. MD(d)、MT(d)编译选项的区别

    1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C++节 3)         点击Code ...

随机推荐

  1. java项目部署之后,Jar包中配置文件修改

    Java项目发布时,配置文件不像.net项目一样与工程路径保持一致,而是直接包含在了jar包中,此时要修改就没那么方便了,我们可以将配置文件从jar包抽离出来,修改完之后再写入Jar包即可, 也没那么 ...

  2. 出现 org.springframework.beans.factory.BeanCreationException 异常的原因及解决方法

    1 异常描述 在从 SVN 检出项目并配置完成后,启动 Tomcat 服务器,报出如下错误: 2 异常原因 通过观察上图中被标记出来的异常信息,咱们可以知道 org.springframework.b ...

  3. yocto-sumo源码解析(十): ProcessServer.idle_commands

    这一节开始介绍ProcessServer.idle_commands,前面我们知道ProcessServer.main就是不停调用idle_commands()以获取可用的套接字描述符或者是文件描述符 ...

  4. windows的滚动条使用

    背景 在毕业快一年的工作时间中,对windows编程的某些特性并不够熟悉,例如滚动条的使用.在一次需求中需要用到滚动条,在开发过程中走了不少弯路,因此需要做一些笔记总结一下学习到的内容. 先推荐几个写 ...

  5. 从零开始的Python学习Episode 23——进程

    ---恢复内容开始--- 进程 由于GIL的存在,python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程.Python提供了非常好用 ...

  6. Ruby知识点三:运算符

    1.逻辑运算符 (1)条件1 || 条件2 条件1为假时,才需判断条件2 (2)条件1 && 条件2 条件1为真时,才需判断条件2 2.范围运算符 (1)x..y  从x到y,包括y ...

  7. truffle Dapp 搭建

    安装truffle $ npm install -g truffle 依赖环境 NodeJS 访问https://nodejs.org 官方网站下载安装 系统:Windows, Linux or Ma ...

  8. Acer 4750G安装OS X 10.9 DP4(简版)

    一.下载os x 10.9懒人版:http://bbs.pcbeta.com/viewthread-1384504-1-1.html 二.用系统自带的磁盘分区工具划分一个5G左右的临时安装盘(新建分区 ...

  9. nginx中location详解

    Location block 的基本语法形式是: location [=|~|~*|^~|@] pattern { ... } [=|~|~*|^~|@] 被称作 location modifier ...

  10. “Hello World!”团队第六周第六次会议

    “Hello World!”团队第六周第六次会议   博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 八.checkout& ...