MT【140】是否存在常数$\textbf{C}$
\(\textbf{天下事有难易乎?为之,则难者亦易矣 不为,则易者亦难矣------《为学》}\)
(中国第59届国际数学奥林匹克国家集训队2018.3.20日测试题)
证明:存在常数\(C>0\)使得对于任意的正整数\(m\),以及任意\(m\)个正整数\(a_1,a_2,\cdots,a_m\),都有
\(H(a_1)+H(a_2)+\cdots+H(a_m)\le C\left(\sum\limits_{k=1}^m{ka_k}\right)^{\frac{1}{2}}\),其中\(H(n)=\sum\limits_{k=1}^{n}{\dfrac{1}{k}}\)

证明:存在.\(C=2\)满足要求.记\(\{a_1,a_2,\cdots,a_m\}=\{b_1,b_2\cdots,b_m\}\)其中\(b_1\ge b_2\ge \cdots \ge b_m\)
\[\begin{align*}
LHS&=\dfrac{1}{1}+\dfrac{1}{2}+\cdots+\dfrac{1}{b_1}+\dfrac{1}{1}+\dfrac{1}{2}+\cdots+\dfrac{1}{b_2}
+\dfrac{1}{1}+\dfrac{1}{2}+\cdots+\dfrac{1}{b_m}\\
& \le m\left(\dfrac{1}{1}+\dfrac{1}{2}+\cdots+\dfrac{1}{b_m}\right) \\
& \le m\sqrt{(1^2+1^2+\cdots 1^2)(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\cdots+\dfrac{1}{b_m^2})}\quad(\textbf{此处用到柯西不等式})\\
&\le m\sqrt{b_m\cdot(1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}\cdots+\dfrac{1}{b_m-1}-\dfrac{1}{b_m})} \quad (\textbf{此处用到}\dfrac{1}{k^2}\le\dfrac{1}{k-1}-\dfrac{1}{k})\\
&=m\sqrt{2b_m-1}\\
RHS&=C\sqrt{1a_1+2a_2+\cdots+ma_m}\\
&\ge C\sqrt{(1+2+\cdots m)b_m}\\
&=C\sqrt{\dfrac{m(m+1)}{2}b_m}
\end{align*}\]
取\(C=2\)时 $ 2\sqrt{\dfrac{m(m+1)}{2}b_m}\ge m\sqrt{2b_m-1}$显然成立.
MT【140】是否存在常数$\textbf{C}$的更多相关文章
- MT【319】分段递推数列
已知数列$ x_n $满足$ 0<x_1<x_2<\pi $,且\begin{equation*} x_{n+1}= \left\{ \begin{aligned}x_n+\sin ...
- MT【142】Bachet 问题,进位制
问题: 满足下面两种限制条件下要想称出40以内的任何整数重量,最少要几个砝码: i)如果砝码只能在天平的某一边; ii)如果砝码可以放在天平的两边. 提示:对于 i)先证明如下事实: \[\textb ...
- 多点触摸(MT)协议(翻译)
参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...
- php 截取代码方法(140个字后的。)
//截取摘要public static function mbsubstr($str){ $strleng = mb_strlen($str,"utf8"); $mbs ...
- 课堂Beta发布140字评论
Beta发布140字评论: 第一组:飞天小女警 此项目组的功能是礼物挑选,创意十足,用户只要一听名字便会被深深吸引,并且页面设计感,时尚感十足,不断吸引客户的眼球,而且发布到云服务器上面. 第二组:金 ...
- /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题
一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1) 打开项目的Property Pages对话框 2) 点击左侧C/C ...
- MT写的对URL操作的两个方法
<!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- iOS开发之----常用函数和常数
介绍一下Objective-c常用的函数,常数变量 算术函数 [算术函数] 函数名 说明 int rand() 随机数生成.(例)srand(time(nil)); //随机数初期化int val = ...
- MD(d)、MT(d)编译选项的区别
1.编译选项的位置 以VS2005为例,这样子打开: 1) 打开项目的Property Pages对话框 2) 点击左侧C/C++节 3) 点击Code ...
随机推荐
- 接口测试中抓包工具Charles的使用
在被测接口并没有明确的接口文档给出时,我们需要借助抓包工具来帮助测试,利用抓包工具我们几乎可以获得接口文档中能给你的一切.常见的抓包工具有Charles和Fiddler, Fiddler只能用在Win ...
- WebGL——osg框架学习一
从今天开始,我们开始正式的学习osg框架,今天我们学习的是osg的渲染模块,我们来看一下代码结构. 所有DrawXXX的js模块都是渲染的模块,我们逐一来简单介绍一下,第一个Drawable.js,这 ...
- Unity学习笔记(3):一些常用API和应用场景
Mathf.Lerp(float a,float b,float t)插值函数,当a < b时往a中插入t,以此来实现颜色,声音等渐变效果. GameObject.FindWithTag(str ...
- Go简单聊天
用Go简单实现网络通信 其余功能可以在这个模型上继续加,比如增加通信人数,实现聊天 server 端 package main import ( "fmt" "log&q ...
- 关于MySql数据库主键及索引的区别
一.什么是索引?索引用来快速地寻找那些具有特定值的记录,所有MySQL索引都以B-树的形式保存.如果没有索引,执行查询时MySQL必须从第一个记录开始扫描整个表的所有记录,直至找到符合要求的记录.表里 ...
- 3分钟手把手带你搭建基于selenium的自动化框架
1 .什么是seleniumSelenium 是一个基于浏览器的自动化工具,它提供了一种跨平台.跨浏览器的端到端的web自动化解决方案.Selenium主要包括三部分:Selenium IDE.Sel ...
- Cocos2d-x的跨平台原理
为了充分发挥硬件性能,手机游戏通常使用Native App开发模式,这就造成开发商要为iOS 和Android平台用户开发不同的应用,无论是产品迭代还是运行维护都非常麻烦.Cocos2d-x在iOS, ...
- 08-matplotlib-颜色与样式
import numpy as np import matplotlib.pyplot as plt ''' 颜色: - 八种内置默认颜色, 缩写 b :blue g :green r :red c ...
- nodejs 搭建自己的简易缓存cache管理模块
http://www.infoq.com/cn/articles/built-cache-management-module-in-nodejs/ 为什么要搭建自己的缓存管理模块? 这个问题其实也是在 ...
- JDK动态代理的简单理解
转载:http://www.cnblogs.com/luotaoyeah/p/3778183.html 动态代理 代理模式是 Java 中的常用设计模式,代理类通过调用被代理类的相关方法,提供预处理. ...