2017ACM暑期多校联合训练 - Team 6 1002 HDU 6097 Mindis (数学)
Problem Description
The center coordinate of the circle C is O, the coordinate of O is (0,0) , and the radius is r.
P and Q are two points not outside the circle, and PO = QO.
You need to find a point D on the circle, which makes PD+QD minimum.
Output minimum distance sum.
Input
The first line of the input gives the number of test cases T; T test cases follow.
Each case begins with one line with r : the radius of the circle C.
Next two line each line contains two integers x , y denotes the coordinate of P and Q.
Limits
T≤500000
−100≤x,y≤100
1≤r≤100
Output
For each case output one line denotes the answer.
The answer will be checked correct if its absolute or relative error doesn't exceed 10−6.
Formally, let your answer be a, and the jury's answer be b. Your answer is considered correct if |a−b|max(1,b)≤10−6.
Sample Input
4
4
4 0
0 4
4
0 3
3 0
4
0 2
2 0
4
0 1
1 0
Sample Output
5.6568543
5.6568543
5.8945030
6.7359174
题意:
给定一个圆心在坐标原点的圆以及该圆的半径,然后给出两个到该圆的圆心等长的非圆外点(点既可以在圆内,也可以在圆上),让从圆上找一点使其到两点的距离最短。
分析:
首先我们考虑两种最特殊的情况:
1.两个点共位置,这种情况也是完全满足题上给出的条件的,这样的话最短距离就是圆半径减去圆心到改点的距离,因为要看做两个点所以还得乘以2.
2.两个点在圆上,这样的话最短距离就是两点之间的距离。
考虑完这两种特殊的情况之后我么看一下一般的情况。
首先介绍一下反演点的定义:
如果圆内有一点P,过圆心做一条与P的连线,将这条线延长,使得在圆外的这条线上有一点P',与P关于该圆对称。
我们即可得出结论OP×OP'=r×r(r为该圆的半径)

然后我们就可以将求DP+DQ转换为求DP' +DQ',
现在的问题在于何种情况下这个点都是在中垂线上的这个点吗?
答案当然不是,我们通过连接两个反演点就可以发现,两个反演点的连线有可能与圆相交,相切的时候可以很简单的确定切点即为所求的点,相离也是如此,问题是相交的时候这个点应该如何确定呢?
相交的时候P、Q、P'、Q'可以构成一个等腰梯形,梯形与圆有一条腰的平分线,这条平分线就是我们要找的最短的距离,当然梯形与圆的交点不是我们要找的点,我们只是通过等量的转换将它转换过来而已。
后面在求DP'的长度的时候,应用到一些有关椭圆的知识,P’Q'就是椭圆的长轴,D到椭圆中心的连线即为短半轴,这样的话DP’即为c,可以简单的求得,最终求出答案。
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
using namespace std;
const double esp=0.000000005;
double dis(double x1,double y1,double x2,double y2)
{
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
double r,x[2],y[2];
scanf("%lf%lf%lf%lf%lf",&r,&x[0],&y[0],&x[1],&y[1]);
double op=dis(0.0,0.0,x[0],y[0]);
if(x[0]==x[1]&&y[0]==y[1])
{
printf("%.7lf\n",2.0*(r-op));
continue;
}
if(op==r)
{
printf("%.7lf\n",dis(x[0],y[0],x[1],y[1]));
continue;
}
double o=acos((x[0]*x[1]+y[0]*y[1])/op/op)/2.0;///op与od的夹角
double d=r*r/op;///d表示的是圆心到反演点的距离
double h=d*cos(o);/// 两反演点构成的直线的距离
if(h<=r)
{
printf("%.7lf\n",2.0*r*sin(o));
continue;
}
double b=h-r,a=d*sin(o);
printf("%.7lf\n",op*sqrt(a*a+b*b)*2.0/r);
}
return 0;
}
2017ACM暑期多校联合训练 - Team 6 1002 HDU 6097 Mindis (数学)的更多相关文章
- 2017ACM暑期多校联合训练 - Team 8 1002 HDU 6134 Battlestation Operational (数论 莫比乌斯反演)
题目链接 Problem Description The Death Star, known officially as the DS-1 Orbital Battle Station, also k ...
- 2017ACM暑期多校联合训练 - Team 7 1002 HDU 6121 Build a tree (深搜+思维)
题目链接 Problem Description HazelFan wants to build a rooted tree. The tree has n nodes labeled 0 to n− ...
- 2017ACM暑期多校联合训练 - Team 1 1002 HDU 6034 Balala Power! (字符串处理)
题目链接 Problem Description Talented Mr.Tang has n strings consisting of only lower case characters. He ...
- 2017ACM暑期多校联合训练 - Team 4 1004 HDU 6070 Dirt Ratio (线段树)
题目链接 Problem Description In ACM/ICPC contest, the ''Dirt Ratio'' of a team is calculated in the foll ...
- 2017ACM暑期多校联合训练 - Team 9 1005 HDU 6165 FFF at Valentine (dfs)
题目链接 Problem Description At Valentine's eve, Shylock and Lucar were enjoying their time as any other ...
- 2017ACM暑期多校联合训练 - Team 9 1010 HDU 6170 Two strings (dp)
题目链接 Problem Description Giving two strings and you should judge if they are matched. The first stri ...
- 2017ACM暑期多校联合训练 - Team 8 1006 HDU 6138 Fleet of the Eternal Throne (字符串处理 AC自动机)
题目链接 Problem Description The Eternal Fleet was built many centuries ago before the time of Valkorion ...
- 2017ACM暑期多校联合训练 - Team 8 1011 HDU 6143 Killer Names (容斥+排列组合,dp+整数快速幂)
题目链接 Problem Description Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith ...
- 2017ACM暑期多校联合训练 - Team 8 1008 HDU 6140 Hybrid Crystals (模拟)
题目链接 Problem Description Kyber crystals, also called the living crystal or simply the kyber, and kno ...
随机推荐
- jsonFormater之应用
html代码: <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> ...
- webgl 初识2
之前的文章介绍了webgl. 这里进一步精简. WebGL的全部内容就是创建不同的着色器, 向着色器提供数据然后调用gl.drawArrays 或 gl.drawElements 让WebGL调用当前 ...
- javascript+html5+css3下拉刷新 数据效果
文章摘自:suchso.com/projecteactual/javascript-html5-css3-taobao-xiala-data.html segmentfault.com/a/11900 ...
- 使用cookie保存用户登录信息
写入Cookie HttpCookie _cookie = new HttpCookie("User"); _cookie.Values.Add("UserName&qu ...
- Struts按着配置文件的加载的顺序,后面文件和前面文件相同的配置,后面的会把前面的文件的值覆盖
Struts按着配置文件的加载的顺序,后面文件和前面文件相同的配置,后面的会把前面的文件的值覆盖
- AtCoder Regular Contest 083 C: Sugar Water
题意 给你一个空杯子,有4种操作: 操作1 加100a克的水 操作2 加100b克的水 操作3 加c克的糖 操作4 加d克的糖 糖的质量不能超过水的质量e/100 糖和水的总质量不能超过f 糖的质量不 ...
- React安装React Devtools调试工具
在运行一个React项目的时候浏览器控制台会提醒你去安装react devtools调试工具. Download the React DevTools for a better development ...
- BZOJ4915 简单的数字题
不妨设a1<a2<a3<a4.显然第一问的答案是4,满足a1+a4=a2+a3,a1+a2|a3+a4,a1+a3|a2+a4.容易发现将其同时扩大k倍是仍然满足条件的,于是考虑gc ...
- vue中axios复用封装
ajax2: function() { let that = this; return that .$http({ method: "get", url: "/Home/ ...
- 洛谷 P2664 树上游戏 解题报告
P2664 树上游戏 题目描述 \(\text{lrb}\)有一棵树,树的每个节点有个颜色.给一个长度为\(n\)的颜色序列,定义\(s(i,j)\) 为 \(i\) 到 \(j\) 的颜色数量.以及 ...