题目链接

Problem Description

最近xhd正在玩一款叫做FATE的游戏,为了得到极品装备,xhd在不停的杀怪做任务。久而久之xhd开始对杀怪产生的厌恶感,但又不得不通过杀怪来升完这最后一级。现在的问题是,xhd升掉最后一级还需n的经验值,xhd还留有m的忍耐度,每杀一个怪xhd会得到相应的经验,并减掉相应的忍耐度。当忍耐度降到0或者0以下时,xhd就不会玩这游戏。xhd还说了他最多只杀s只怪。请问他能升掉这最后一级吗?

Input

输入数据有多组,对于每组数据第一行输入n,m,k,s(0 < n,m,k,s < 100)四个正整数。分别表示还需的经验值,保留的忍耐度,怪的种数和最多的杀怪数。接下来输入k行数据。每行数据输入两个正整数a,b(0 < a,b < 20);分别表示杀掉一只这种怪xhd会得到的经验值和会减掉的忍耐度。(每种怪都有无数个)

Output

输出升完这级还能保留的最大忍耐度,如果无法升完这级输出-1。

Sample Input

10 10 1 10

1 1

10 10 1 9

1 1

9 10 2 10

1 1

2 2

Sample Output

0

-1

1

分析:

从题目可以看出,怪物可以无限刷,那么这就是完全背包问题。因为题目中涉及到两个条件(忍耐度,刷怪数量),可以看出这是一个二维费用完全背包题目。

我们应该用一个二维的dp数组存放在一定的(刷怪数量和和忍耐度)的状态,得到的经验是多少。

状态转移方程:dp[j][z] = max(dp[j - 1][z - b[i]] + a[i], dp[j][z]);(j为刷怪数量,z为忍耐度,b[i]为第i个怪消耗掉的忍耐度,a[i]代表第i个怪的得到的经验)。最后注意是完全背包就可以了。

代码:

#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn = 1e2 + 10;
int dp[maxn][maxn];
int a[maxn], b[maxn]; int main()
{
int n, m, k, s;
while(~scanf("%d%d%d%d", &n, &m, &k, &s))
{
for(int i = 1; i <= k; ++ i)
{
scanf("%d%d", &a[i], &b[i]);
}
memset(dp, 0, sizeof(dp)); for(int i = 1; i <= k; ++ i)//怪的种类
{
for(int z = b[i]; z <= m; ++ z)//消耗的忍耐(完全背包)
{
for(int j = 1; j <= s; j ++) //打怪的数量 必须从1到s
{
dp[j][z] = max(dp[j - 1][z - b[i]] + a[i], dp[j][z]);
}
}
}
if(dp[s][m] >= n)
{
for(int i = 0; i <= m; ++ i)
{
if(dp[s][i] >= n)
{
printf("%d\n", m - i);
break;
}
}
}
else
{
printf("-1\n");
}
}
return 0;
}

HDU 2159 FATE (dp)的更多相关文章

  1. HDOJ(HDU).2159 FATE (DP 带个数限制的完全背包)

    HDOJ(HDU).2159 FATE (DP 带个数限制的完全背包) 题意分析 与普通的完全背包大同小异,区别就在于多了一个个数限制,那么在普通的完全背包的基础上,增加一维,表示个数.同时for循环 ...

  2. HDU 2159 FATE(二维费用背包)

    FATE Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  3. HDU 2159 FATE 完全背包

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2159 FATE Time Limit: 2000/1000 MS (Java/Others)Memo ...

  4. HDU 2159 FATE (dp)

    FATE Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submissi ...

  5. HDU 2159 FATE (DP 二维费用背包)

    题目链接 题意 : 中文题不详述. 思路 : 二维背包,dp[i][h]表示当前忍耐值为i的情况下,杀了h个怪得到的最大经验值,状态转移方程: dp[i][h] = max(dp[i][h],dp[i ...

  6. HDU - 2159 FATE(二维dp之01背包问题)

    题目: ​ 思路: 二维dp,完全背包,状态转移方程dp[i][z] = max(dp[i][z], dp[i-1][z-a[j]]+b[j]),dp[i][z]表示在杀i个怪,消耗z个容忍度的情况下 ...

  7. hdu 2159 FATE(DP)

    题意: 小余玩游戏,离最后一级还需n的经验值,但是他已经很厌烦了,还剩下m的忍耐度.每杀一只怪小余会得到相应的经验,同时减掉相应的忍耐度. 当忍耐度降到0或者0以下时,小余就不会再玩这个游戏.小余还说 ...

  8. HDU 2159 FATE (二维完全背包

    FATE http://acm.hdu.edu.cn/showproblem.php?pid=2159 Problem Description 最近xhd正在玩一款叫做FATE的游戏,为了得到极品装备 ...

  9. hdu 2159 FATE

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2159 思路:二维完全背包,状态转移方程为: f[j][l]=max(f[j][l],f[j-b[i]] ...

随机推荐

  1. scrum 项目准备2.0

    1.确定选题. 应用NABCD模型,分析你们初步选定的项目,充分说明你们选题的理由. 录制为演说视频,上传到视频网站,并把链接发到团队博客上. 截止日期:2016.5.6日晚10点 演说稿: 各位领导 ...

  2. 敏捷冲刺DAY6

    一. 每日会议 1. 照片 2. 昨日完成工作 3. 今日完成工作 4. 工作中遇到的困难 对于可视控件,是能进行设计的,但是对于不可视组件,比如AdoConnection怎么才能设计.但是我看del ...

  3. 结对编程--fault,error,failure的程序设计

    一.结对编程内容: 1.不能触发Fault. 2.触发Fault,但是不触发Error. 3.触发Error,但不触发Failure. 二.结对编程人员 1.周浩,周宗耀 2.结对截图: 三.结对项目 ...

  4. [CB] Windows10为什么质量变差 bug越来越多

    在 Windows 10 发布之后,微软转向了软件即服务模式,每半年释出一个新版本,通过增加更新频率将新的特性不断推送给用户. 在以前,微软产品发布周期是两到三年,其开发流程分成多个阶段:设计和策划. ...

  5. SQL中的逻辑运算符

    逻辑运算符和比较运算符一样,都是返回 true 或 false 值得布尔数据类型.   运算符 行为 ALL 如果一个比较集中全部都是 true ,则值为 true AND 如果两个布尔值表达式均为 ...

  6. ZOJ1827_The Game of 31

    这是一个比较经典的博弈题目,今年网赛好像是南京赛上有一个类似的题目. 这种题目是没有一定公式或者函数的,需要自己dp或者搜索解决. 题意为分别给你4张写有1,2,3,4,5,6的卡片共24张,每次轮流 ...

  7. Hadoop RPC protocol description--转

    原文地址:https://spotify.github.io/snakebite/hadoop_rpc.html Snakebite currently implements the followin ...

  8. 【转】c# thread.join 理解

    转自:http://blog.csdn.net/lulu_jiang/article/details/6584251 线程Join()方法:让一个线程等待另一线程终结后再继续运行. private s ...

  9. 【BZOJ3244】【NOI2013】树的计数(神仙题)

    [BZOJ3244][NOI2013]树的计数(神仙题) 题面 BZOJ 这题有点假,\(bzoj\)上如果要交的话请输出\(ans-0.001,ans,ans+0.001\) 题解 数的形态和编号没 ...

  10. ZJOI 2017 二试 day0

    2017.4.25 话说4.24怒订正了6题,早上大扫除,把校服弄脏了too sad 中午从二中出发,只2个小时不到就抵达宾馆,开始先在大厅等候了半天(分配房间),和一试差不多.只是这个宾馆要远优于“ ...