二叉树的深度的概念最值得注意的地方,在于 到"叶子"节点的距离。

一般来说,如果直接说“深度”,都是指最大深度,即最远叶子的距离。

这里放两道例题,最小深度和最大深度。

1. 二叉树的最小深度

Given a binary tree, find its minimum depth.

The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.

 /**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int minDepth(TreeNode *root) {
}
};

因为深度是必须到叶子节点的距离,因此使用深度遍历时,不能单纯的比较左右子树的递归结果返回较小值,因为对于有单个孩子为空的节点,为空的孩子会返回0,但这个节点并非叶子节点,故返回的结果是错误的。

因此,当发现当前处理的节点有单个孩子是空时,返回一个极大值INT_MAX,防止其干扰结果。

 class Solution {
public:
int minDepth(TreeNode *root) {
if(!root) return ;
if(!root -> left && !root -> right) return ; //Leaf means should return depth.
int leftDepth = + minDepth(root -> left);
leftDepth = (leftDepth == ? INT_MAX : leftDepth);
int rightDepth = + minDepth(root -> right);
rightDepth = (rightDepth == ? INT_MAX : rightDepth); //If only one child returns 1, means this is not leaf, it does not return depth.
return min(leftDepth, rightDepth);
}
};

当然,这道题也能用层次遍历来做。

class Solution {
struct LevNode{
TreeNode* Node;
int Lev;
};
public:
int minDepth(TreeNode *root) {
if(NULL == root) return ;
queue<LevNode> q;
LevNode lnode;
lnode.Node = root;
lnode.Lev = ;
q.push(lnode);
while(!q.empty()){
LevNode curNode = q.front();
q.pop();
if(NULL == (curNode.Node) -> left && NULL == (curNode.Node) -> right)
return (curNode.Lev);
if(NULL != (curNode.Node) -> left){
LevNode newNode;
newNode.Node = (curNode.Node) -> left;
newNode.Lev = (curNode.Lev + );
q.push(newNode);
}
if(NULL != (curNode.Node) -> right){
LevNode newNode;
newNode.Node = (curNode.Node) -> right;
newNode.Lev = (curNode.Lev + );
q.push(newNode);
}
}
return ;
}
};

对于这道题,LeetCode 两种解法的时间都是 48ms

2. 二叉树的最大深度

Given a binary tree, find its maximum depth.

The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.

最大深度也是到叶子节点的长度,但是因为是求最大深度,单个孩子为空的非叶子节点不会干扰到结果,因此用最简洁的处理方式就可以搞定。

/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int maxDepth(TreeNode *root) {
if(!root) return ;
int leftDepth = maxDepth(root -> left) + ;
int rightDepth = maxDepth(root -> right) + ;
return max(leftDepth, rightDepth);
}
};

二叉树系列 - 二叉树的深度,例 [LeetCode]的更多相关文章

  1. 二叉树系列 - 二叉树里的最长路径 例 [LeetCode] Binary Tree Maximum Path Sum

    题目: Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start ...

  2. 二叉树系列 - 求两节点的最低公共祖先,例 剑指Offer 50

    前言 本篇是对二叉树系列中求最低公共祖先类题目的讨论. 题目 对于给定二叉树,输入两个树节点,求它们的最低公共祖先. 思考:这其实并不单单是一道题目,解题的过程中,要先弄清楚这棵二叉树有没有一些特殊的 ...

  3. [LeetCode系列] 二叉树最大深度求解问题(C++递归解法)

    问: 给定二叉树, 如何计算二叉树最大深度? 算法描述如下: 如果当前节点为空, 返回0(代表此节点下方最大节点数为0) 如果当前节点不为空, 返回(其左子树和右子树下方最大节点数中的最大值+1) 上 ...

  4. 树&二叉树&&满二叉树&&完全二叉树&&完满二叉树

    目录 树 二叉树 完美二叉树(又名满二叉树)(Perfect Binary Tree) 完全二叉树(Complete Binary Tree) 完满二叉树(Full Binary Tree) 树 名称 ...

  5. 二叉树&满二叉树与完全二叉树

    二叉树的定义 二叉树(Binary Tree)是n(n≥0)个元素的有限集合,该集合为空或者为由一个称为"根"的元素及两个不相交的.被分别称为左子树和右子树的二叉树组成 二叉树的基 ...

  6. 【二叉树】二叉树常用算法的C++实现

    常见算法有: 1.求二叉树的最大深度 2.求二叉树的最小深度 3.二叉树的层次遍历 4.二叉树的前序遍历 5.二叉树的中序遍历 6.二叉树的后序遍历 7.求二叉树的节点个数 8.求二叉树的叶节点个数 ...

  7. openssl之EVP系列之9---EVP_Digest系列函数的一个样例

    openssl之EVP系列之9---EVP_Digest系列函数的一个样例     ---依据openssl doc/crypto/EVP_DigestInit.pod翻译     (作者:Drago ...

  8. 数据结构(3) 第三天 栈的应用:就近匹配/中缀表达式转后缀表达式 、树/二叉树的概念、二叉树的递归与非递归遍历(DLR LDR LRD)、递归求叶子节点数目/二叉树高度/二叉树拷贝和释放

    01 上节课回顾 受限的线性表 栈和队列的链式存储其实就是链表 但是不能任意操作 所以叫受限的线性表 02 栈的应用_就近匹配 案例1就近匹配: #include <stdio.h> in ...

  9. LeetCode重建二叉树系列问题总结

    二叉树天然的递归特性,使得我们可以使用递归算法对二叉树进行遍历和重建.之前已经写过LeetCode二叉树的前序.中序.后序遍历(递归实现),那么本文将进行二叉树的重建,经过对比,会发现二者有着许多相似 ...

随机推荐

  1. Python坑系列:可变对象与不可变对象

    在之前的文章 http://www.cnblogs.com/bitpeng/p/4748148.html 中,大家看到了ret.append(path) 和ret.append(path[:])的巨大 ...

  2. redis 常用命令 结合php

    这篇文章主要介绍了30个php操作redis常用方法代码例子,本文其实不止30个方法,可以操作string类型.list类型和set类型的数据,需要的朋友可以参考下     redis的操作很多的,以 ...

  3. 树状数组怒刷sum!!!(前缀和应用)

    我们知道我们利用树状数组维护的是存到其中的a[ ]数组,但是我们做题需要的是sum[ ]数组,这才是我们真正需要的有用的信息,写这篇博客的目的便是整理一下sum数组是怎么样来应用解题的. 1. Sta ...

  4. 18软工实践-第八次作业(课堂实战)-项目UML设计(团队)

    目录 团队信息 分工选择 课上分工 课下分工 ToDolist alpha版本要做的事情 燃尽图 UML 用例图 状态图 活动图 类图 部署图 实例图 对象图 时序图 包图 通信图 贡献分评定 课上贡 ...

  5. Alpha冲刺——第五天

    Alpha第五天 听说 031502543 周龙荣(队长) 031502615 李家鹏 031502632 伍晨薇 031502637 张柽 031502639 郑秦 1.前言 任务分配是VV.ZQ. ...

  6. css3浏览器私有属性前缀使用详解

    什么是浏览器私有属性前缀 CSS3的浏览器私有属性前缀是一个浏览器生产商经常使用的一种方式.它暗示该CSS属性或规则尚未成为W3C标准的一部分. 以下是几种常用前缀 -webkit- -moz- -m ...

  7. CentOS 6.5安装配置LAMP服务器(Apache+PHP5+MySQL)

    1.配置防火墙,开启80端口.3306端口vi /etc/sysconfig/iptables-A INPUT -m state --state NEW -m tcp -p tcp --dport 8 ...

  8. Mysql中关键词执行顺序

    MySQL的语句执行顺序 MySQL的语句一共分为11步,最先执行的总是FROM操作,最后执行的是LIMIT操作.其中每一个操作都会产生一张虚拟的表,这个虚拟的表作为一个处理的输入,只是这些虚拟的表对 ...

  9. postman 断言学习

    请求 url :https://www.v2ex.com/api/nodes/show.json?name=python get请求 postman发起请求并做断言 断言: tests["B ...

  10. 前端基础:JavaScript DOM对象

    JavaScript DOM对象 通过HTML DOM,可以访问JavaScript HTML文档的所有元素. 一.HTML DOM(文档对象模型) 当网页被加载时,浏览器会创建页面的文档对象模型(D ...