求$gcd>1$的所有$gcd(a_i,a_{i+1}…a_{n})*(n-i+1)$的和

首先先标记所有出现的数。从高到低枚举一个数k,记录它的倍数出现次数cnt,那么当前所有组合的答案就是$ans[k]=cnt*2^{cnt-1}$,但是这个答案只有gcd=k的组合是没被计算过的,其他已经被k的倍数计算过了,所以要减去此前算过的所有n的$ans[k|n]$。

/** @Date    : 2017-08-13 14:38:39
* @FileName: 839D 容斥.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e6+20;
const double eps = 1e-8;
const LL mod = 1e9 + 7; LL fpow(LL x, LL n)
{
LL ans = 1;
while(n > 0)
{
if(n & 1)
ans = (ans * x % mod + mod) % mod;
x = (x * x % mod + mod)% mod;
n >>= 1;
}
return ans;
} LL cnt[N];
LL rep[N];
int n;
int main()
{
while(cin >> n)
{
MMF(cnt);
MMF(rep);
int x;
for(int i = 0; i < n; i++) scanf("%d", &x), cnt[x]++; LL ans = 0;
for(int i = 1000000; i >= 2; i--)
{
LL c = 0;
for(int j = i; j <= 1000000; j+=i)
c += cnt[j];
if(!c)
continue;
//cout << i << c << endl;
rep[i] = (c * fpow(2, c - 1) % mod + mod) % mod;
//cout << rep[i] << endl;
for(int j = i + i; j <= 1000000; j+=i)
if(rep[j])
rep[i] = (rep[i] - rep[j] + mod) % mod;
//cout << rep[i] << endl;
ans = (ans + rep[i] * (LL)i % mod + mod) % mod;
}
printf("%lld\n", ans);
}
return 0;
}

CF839 D 容斥的更多相关文章

  1. POJ1091跳蚤(容斥 + 唯一分解 + 快速幂)

      题意:规定每次跳的单位 a1, a2, a3 …… , an, M,次数可以为b1, b2, b3 …… bn, bn + 1, 正好表示往左,负号表示往右, 求能否调到左边一位,即 a1* b1 ...

  2. HDU 4059 容斥初步练习

    #include <iostream> #include <cstring> #include <cstdio> #include <algorithm> ...

  3. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  4. 【BZOJ-4455】小星星 容斥 + 树形DP

    4455: [Zjoi2016]小星星 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 204  Solved: 137[Submit][Status] ...

  5. cf#305 Mike and Foam(容斥)

    C. Mike and Foam time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  6. UVa12633 Super Rooks on Chessboard(容斥 + FFT)

    题目 Source http://acm.hust.edu.cn/vjudge/problem/42145 Description Let’s assume there is a new chess ...

  7. PE-1 & 暴模|容斥

    题意: 求1000以下3或5的倍数之和. SOL: 暴模也是兹瓷的啊... 那么就想到了初赛悲催的滚粗...容斥忘了加上多减的数了... 然后对着题...T = 3*333*(1+333)/2 + 5 ...

  8. HDU 5838 (状压DP+容斥)

    Problem Mountain 题目大意 给定一张n*m的地图,由 . 和 X 组成.要求给每个点一个1~n*m的数字(每个点不同),使得编号为X的点小于其周围的点,编号为.的点至少大于一个其周围的 ...

  9. hdu 5792(树状数组,容斥) World is Exploding

    hdu 5792 要找的无非就是一个上升的仅有两个的序列和一个下降的仅有两个的序列,按照容斥的思想,肯定就是所有的上升的乘以所有的下降的,然后再减去重复的情况. 先用树状数组求出lx[i](在第 i ...

随机推荐

  1. mininet实验 动态改变转发规则实验

    写在前面 本实验参考 POX脚本设置好控制器的转发策略,所以只要理解脚本. mininet脚本设置好拓扑和相关信息,所以也只要理解脚本. POX脚本目前基本看不懂. 本实验我学会了:POX控制器Web ...

  2. BETA阶段冲刺集合

    冲刺开始: https://www.cnblogs.com/LZTZ/p/9097296.html 第一天: https://www.cnblogs.com/LZTZ/p/9097303.html 第 ...

  3. 为何php curl post模式发送数据速度变慢了?我来说说原因

    事例: 今天要向一台服务器上传文件,原版是curl的get模式,现在改用了post模式,按照原本的思想,代码如下 <?php $post['c'] = 'config'; $post['t'] ...

  4. webgl 初识2

    之前的文章介绍了webgl. 这里进一步精简. WebGL的全部内容就是创建不同的着色器, 向着色器提供数据然后调用gl.drawArrays 或 gl.drawElements 让WebGL调用当前 ...

  5. Web模块:spring-boot-starter-web

    spring-boot-autoconfigure-1.5.1.RELEASE.jar!/org/springframework/boot/autoconfigure/web 上述jar的web包下, ...

  6. SDOI2017 解题报告

    数字表格 \(T\)次询问,每次给出\(n,m(n,m\le 10^6)\),\(f\)为斐波那契数列,\(f_0=0,f_1=1\),求: \[ \prod _{i=1}^n\prod _{j=1} ...

  7. BZOJ3613 HEOI2014南园满地堆轻絮

    不明白在某谷上是怎么标到紫的.二分答案或者发现答案就是最大逆序差的一半. #include<iostream> #include<cstdio> #include<cma ...

  8. 深入理解JVM一类加载器原理

    我们知道我们编写的java代码,会经过编译器编译成字节码文件(class文件),再把字节码文件装载到JVM中,映射到各个内存区域中,我们的程序就可以在内存中运行了.那么字节码文件是怎样装载到JVM中的 ...

  9. Cells UVALive - 3486(dfs序+手动开栈)

    给一棵树,每次每次询问一个点是否是另一个点的祖先? 输入时是每个下标对应节点的儿子的数量 用dfs序 时间戳.. 如果一个点是另一个点的祖先,那么它的两个标记一定在祖先的范围之内 #include & ...

  10. 【CF625E】Frog Fights(模拟)

    [CF625E]Frog Fights(模拟) 题面 CF 洛谷 翻译: 有\(n\)只青蛙在一个被分为了\(m\)等分的圆上,对于每份顺时针依次标号. 初始时每只青蛙所在的位置是\(p_i\),速度 ...