图像金字塔指的是同一图像不同分辨率的子图的集合,有向下取样金字塔,向上取样金字塔,拉普拉斯金字塔....它是图像多尺度表达的一种,最主要的是用于图像的分割

向下取样金字塔指高分辨率图像向低分辨率图像的转换,从第i层获得第i+1层的步骤(G[i]->G[i+1])

1.对图像G【i】进行高斯卷积,卷积核为得到一个新的高斯模糊后的图像,

2.对新图像删除所有偶数行和偶数列(像素),得到缩小为原图四分之一的新图,即G[i+1]

上述操作称为Octave。

重复下去,可以不断缩小图像(每次变为原图的四分之一),但会丢失一些图像。

向上取样金字塔指低分辨率图像向高分辨率图像的转换,从第i层获得第i+1层的步骤(G[i]->G[i+1])

1.每个方向上扩大为原来的二倍,即增加行和列,新增的行和列以0填充

2.使用与向下取样同样的卷积核的4倍对每一个像素处理,得到新图

但想上去样是一个模糊图像,不能得到新的信息。

(向上取样和向下取样不是互逆的)


向下取样:Python: cv2.pyrDown(src[, dst[, dstsize]]) → dst

向上取样:Python: cv2.pyrUp(src[, dst[, dstsize]]) → dst

一般只需要src一个参数即可

import cv2 as cv
import numpy as np #图像金字塔
img = cv.imread("E:/pictures/lena.jpg")
down = cv.pyrDown(img) #向下取样
up = cv.pyrUp(down) #向上取样
cv.imshow("up",up)
diff = img-up
cv.imshow("diffenent",diff) #比较和原图的差异
cv.imshow("orginal",img)
cv.imshow("down",down)
cv.waitKey()
cv.destroyAllWindows()

 


拉普拉斯金字塔:向上取样是图像的尺度变大,向下取样是图像的尺度变大,拉普拉斯金字塔:L[i] = G[i] - pyrUp(pyrDown(src))(L[i]表示i层拉普拉斯图像,G[i]表示原图)也就是上述代码的diffent图像,是在高斯金字塔的基础上构造的金字塔,意思是拉普拉斯金字塔每一层的图像为同一层高斯金字塔的图像减去上一层的图像进行上采样并高斯模糊的结果。说的有点绕,可以看网上的这幅图进行理解

实现起来很简单:

img = cv.imread("E:/pictures/lena.jpg")
down = cv.pyrDown(img)
up = cv.pyrUp(down)
L1 = img-up #1层拉普拉斯图像 down2 = cv.pyrDown(down)
up2 = cv.pyrUp(down2)
L2 = down-up2 #2层拉普拉斯图像
#以此类推..........
cv.imshow("orginal",img)
cv.imshow("L1",L1)
cv.imshow("L2",L2)
cv.waitKey()
cv.destroyAllWindows()

 

opencv学习笔记(七)---图像金字塔的更多相关文章

  1. 【opencv学习笔记七】访问图像中的像素与图像亮度对比度调整

    今天我们来看一下如何访问图像的像素,以及如何改变图像的亮度与对比度. 在之前我们先来看一下图像矩阵数据的排列方式.我们以一个简单的矩阵来说明: 对单通道图像排列如下: 对于双通道图像排列如下: 那么对 ...

  2. [OpenCV学习笔记3][图像的加载+修改+显示+保存]

    正式进入OpenCV学习了,前面开始的都是一些环境搭建和准备工作,对一些数据结构的认识主要是Mat类的认识: [1.学习目标] 图像的加载:imread() 图像的修改:cvtColor() 图像的显 ...

  3. OpenCV学习笔记(10)——图像梯度

    学习图像梯度,图像边界等 梯度简单来说就是求导. OpenCV提供了三种不同的梯度滤波器,或者说高通滤波器:Sobel,Scharr和Lapacian.Sobel,Scharr其实就是求一阶或二阶导. ...

  4. OpenCV学习笔记(7)——图像阈值

    简单阈值,自适应阈值,Otsu's二值化等 1.简单阈值 当像素值高于阈值时,我们给这个像素赋予一个新值,否则给他赋予另一个值.这个函数就是cv2.threshhold().这个函数的第一个参数就是原 ...

  5. opencv学习笔记(六)---图像梯度

    图像梯度的算法有很多方法:sabel算子,scharr算子,laplacian算子,sanny边缘检测(下个随笔)... 这些算子的原理可参考:https://blog.csdn.net/poem_q ...

  6. opencv学习笔记(五)----图像的形态学操作

    图像的形态学操作有基本的腐蚀和膨胀操作和其余扩展形态学变换操作(高级操作)-----开运算,闭运算,礼帽(顶帽)操作,黑帽操作...(主要也是为了去噪声,改善图像) 形态学操作都是用于处理二值图像(其 ...

  7. opencv学习笔记3——图像缩放,翻转和阈值分割

    #图像的缩放操作 #cv.resize(src,dsize,dst=None,,fx=None,fy=None,interpolation=None) #src->原图像,dsize->目 ...

  8. OpenCV学习笔记(3)——图像的基本操作

    获取图像的像素值并修改 获取图像的属性(信息) 图像的ROI() 图像通道的拆分及合并 1.获取并修改像素值 先读入图像装入一个图像实体,然后该实体相当于一个多维list,可以直接用数组操作提取像素信 ...

  9. OpenCV学习笔记七:opencv_nonfree模块

    一,简介: 顾名思义,这个模块不是free的.主要包含: 1,SIFT implementation. The class implements SIFT algorithm by D. Lowe. ...

随机推荐

  1. 解决VirtualBox 上的XP 关机时重启 , 启动时蓝屏 ,点击电源选项蓝屏

    三个问题一次性解决. 启动时的蓝屏显示错误信息是: STOP 0x000000CE (...) DRIVER_UNLOADED_WITHOUT_CANCELLING_PENDING_OPERATION ...

  2. Django中的元类-乾颐堂

    看Django(1.6)的Form相关源代码时比较迷惑,于是节选了django.forms.forms.py中的几个代码片段来分析Django中是怎么使用元类的: 1 2 3 4 5 6 7 8 9 ...

  3. Python使用日常

    #Python中文件夹和文件的判断import os My_Path = "/home/lpworkstudy/Gooddir/" #现在我们判断这个文件夹是否存在 #如果不存在, ...

  4. springmvc框架简单搭建

    一.利用xml 配置 1.web.xml   <web-app version="2.4"     xmlns="http://java.sun.com/xml/n ...

  5. JAVA中简单的MD5加密类(MD5Utils)

    MD5加密分析:   JDK API:   获取对象的API:   加密的API:   package cn.utils; import java.security.MessageDigest; im ...

  6. Arch Linux freemind中文乱码

    原因:jre没有可用的中文字体 解决方法: (1) 安装中文字体,例如文泉驿微黑 pacman -S wqy-microhei (2) jre字体目录下建立fallback,并链接中文字体作为后备字体 ...

  7. 深入理解java虚拟机(四)垃圾收集算法及HotSpot实现

    垃圾收集算法 一般来说,垃圾收集算法分为四类: 标记-清除算法 最基础的算法便是标记-清除算法(Mark-Sweep).算法分为“标记”和“清除”两个阶段:首先标记处需要收集的对象,在标记完成之后,再 ...

  8. PyCharm社区版+Django搭建web开发环境-1

    PyCharm开源社区版不像商业版那样可以直接通过Django来创建项目,必须通过以下几个步骤进行: 1. 创建项目:在cmd命令行下输入:django-admin startproject Demo ...

  9. 用 Inkscape 做 SVG 给 TPath

    FireMonkey 里的 TPathData 支持 SVG 的基本绘图指令,因此可以运用 Inkscape 软件,提取 SVG 的绘图内容,请见图片说明: INKSCAPE https://inks ...

  10. [LINK]List of .NET Dependency Injection Containers (IOC)

    http://www.hanselman.com/blog/ListOfNETDependencyInjectionContainersIOC.aspx I'm trying to expand my ...