题意:给你n、k,问你有多少个n为二进制的数(无前导零)的0与1一样多,且是k的倍数

题解:对于每个k都计算一次dp,dp[i][j][kk][l]表示i位有j个1模k等于kk且第一位为l(0/1)

   再次预处理mod[i][j]表示1的i次方模j等于几,具体看代码注释

   

import java.util.Scanner;

public class Main{
static int Maxn=65;
static int Maxk=101;
//前i个数有j个1模给定的值余k且第一位为1或者0的总个数
static long[][][][] dp = new long[Maxn][Maxn][Maxk][2];
//初始化1的i次方模j等于几
static int[][] Mod=new int[Maxn][Maxk]; //初始化
static void Init(){
for(int i=0;i<Maxn;++i){
for(int j=1;j<Maxk;++j){
Mod[i][j]=(int) ((1L << i)%j);
}
}
}
//按位dp求出当有n位是模kk等于0的总个数
static long Solve(int n,int kk){
if(kk==0||(n&1)==1)//特判
return 0L;for(int i=0;i<=n;++i)//初始化
for(int j=0;j<=i;++j)
for(int k=0;k<=kk;++k){
dp[i][j][k][0]=dp[i][j][k][1]=0L;
}
dp[0][0][0][0]=1L;
//每种dp的i位只与i-1位相关
for(int i=1;i<=n;++i){
//求i位有i/2个1时需要i-1位有i/2与i/2-1个1,但是再向前推就需要更多所以将出现所有可能个1的情况求出
for(int j=0;j<=i&&j<=n/2;++j){
//模kk等于所有k的情况都需要求出,用于下一次使用
for(int k=0;k<kk;++k){
//此位置放0
dp[i][j][k][0]+=dp[i-1][j][k][0]+dp[i-1][j][k][1];
//此位置放1,k就等于前一个是当前位置减去(1<<i-1)后再模kk的值
if(j>0){
dp[i][j][k][1]+=dp[i-1][j-1][(k+kk-Mod[i-1][kk])%kk][0]+dp[i-1][j-1][(k+kk-Mod[i-1][kk])%kk][1];//计算余数
} }
}
}
return dp[n][n/2][0][1];
}
public static void main(String[] args) {
int t,coun=0;
int n,k;
Init();
Scanner sc =new Scanner(System.in);
t=sc.nextInt();
while(t!=0){
n=sc.nextInt();
k=sc.nextInt();
System.out.println("Case "+(++coun)+": "+Solve(n,k));
t--;
} }
}

UVA 12063 Zeros and Ones(三维dp)的更多相关文章

  1. UVA 12063 Zeros and Ones

    https://vjudge.net/problem/UVA-12063 题意: 统计n为二进制数中,0和1相等且值为m的倍数的数有多少个 dp[i][j][k] 前i位二进制 有j个1 值模m等于k ...

  2. UVA 12063 Zeros and ones 一道需要好好体会的好题

    #include<bits/stdc++.h> #include<stdio.h> #include<iostream> #include<cmath> ...

  3. UVa 12063 (DP) Zeros and Ones

    题意: 找出长度为n.0和1个数相等.没有前导0且为k的倍数的二进制数的个数. 分析: 这道题要用动态规划来做. 设dp(zeros, ones, mod)为有zeros个0,ones个1,除以k的余 ...

  4. UVA 10163 Storage Keepers(两次DP)

    UVA 10163 Storage Keepers(两次DP) http://uva.onlinejudge.org/index.php? option=com_onlinejudge&Ite ...

  5. 三维dp&codeforce 369_2_C

    三维dp&codeforce 369_2_C 标签: dp codeforce 369_2_C 题意: 一排树,初始的时候有的有颜色,有的没有颜色,现在给没有颜色的树染色,给出n课树,用m种燃 ...

  6. uva 11584 Partitioning by Palindromes 线性dp

    // uva 11584 Partitioning by Palindromes 线性dp // // 题目意思是将一个字符串划分成尽量少的回文串 // // f[i]表示前i个字符能化成最少的回文串 ...

  7. UVA - 825Walking on the Safe Side(dp)

    id=19217">称号: UVA - 825Walking on the Safe Side(dp) 题目大意:给出一个n * m的矩阵.起点是1 * 1,终点是n * m.这个矩阵 ...

  8. P1006 传纸条(二维、三维dp)

    P1006 传纸条 输入输出样例 输入 #1 复制 3 3 0 3 9 2 8 5 5 7 0 输出 #1 复制 34 说明/提示 [限制] 对于 30% 的数据,1≤m,n≤10: 对于 100% ...

  9. 紫书 习题 10-15 UVa 12063(数位dp)

    大佬真的强!!https://blog.csdn.net/u014800748/article/details/45225881 #include<cstdio> #include< ...

随机推荐

  1. data lake 新式数据仓库

    Data lake - Wikipedia https://en.wikipedia.org/wiki/Data_lake 数据湖 Azure Data Lake Storage Gen2 预览版简介 ...

  2. artTemplate模板使用补充

    1. 添加辅助方法 ``template.helper(name, callback)``辅助方法一般用来进行字符串替换,如 UBB 替换.脏话替换等. 例如扩展一个UBB替换方法: template ...

  3. Junit 3.8.1 源码分析之两个接口

    1. Junit源码文件说明 runner framework:整体框架; extensions:可以对程序进行扩展; textui:JUnit运行时的入口程序以及程序结果的呈现方式; awtui:J ...

  4. 为golang程序使用pprof远程查看httpserver运行堆栈,cpu耗时等信息

    pprof是个神马玩意儿? pprof - manual page for pprof (part of gperftools) 是gperftools工具的一部分 gperftools又是啥? Th ...

  5. 借助 Django 的 smart_str 和 smart_unicode 进行编码转换(转)

    原文:http://www.dirk.sh/diary/using-django-smart_str-smart_unicode/ Django 为字符编码的转换提供了非常简洁的方法: 1.djang ...

  6. 脱离JVM? Hadoop生态圈的挣扎与演化

    本文由知乎<大数据应用与实践>专栏 李呈祥授权发布,版权所有归作者,转载请联系作者! 新世纪以来,互联网及个人终端的普及,传统行业的信息化及物联网的发展等产业变化产生了大量的数据,远远超出 ...

  7. 剑指offer-java

    面试题67 机器人的运动范围 题意: 地上有一个m行和n列的方格.一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子. ...

  8. JDK环境变量配置目录jre,jvm

    类路径 :CLASSPATH= .;%JAVA_HOME%/lib/dt.jar;%JAVA_HOME%/lib/tools.jar   JDK的路径:JAVA_HOME = C:/Program F ...

  9. APP移动端开发html模板

    移动端开发模板: 750的稿子除以75: <!DOCTYPE html> <html> <head> <meta charset="utf-8&qu ...

  10. HDU - 4675 GCD of Sequence (莫比乌斯反演+组合数学)

    题意:给出序列[a1..aN],整数M和k,求对1-M中的每个整数d,构建新的序列[b1...bN],使其满足: 1. \(1 \le bi \le M\) 2. \(gcd(b 1, b 2, -, ...