转自:http://liujiacai.net/blog/2014/09/07/yarn-intro/

Yarn是随着hadoop发展而催生的新框架,全称是Yet Another Resource Negotiator,可以翻译为“另一个资源管理器”。yarn取代了以前hadoop中jobtracker(后面简写JT)的角色,因为以前JT的任务过重,负责任务的调度、跟踪、失败重启等过程,而且只能运行mapreduce作业,不支持其他编程模式,这也限制了JT使用范围,而yarn应运而生,解决了这两个问题。

为了表述清楚,大家可以先看hadoop版本说明这篇文章,我这里要说的是hadoop2.0,也就是新增了yarn之后的版本。

1. Yarn(或称MRv2)

Yarn把jobtracker的任务分解开来,分为:

  • ResourceManager(简写RM)负责管理分配全局资源
  • ApplicationMaster(简写AM),AM与每个具体任务对应,负责管理任务的整个生命周期内的所有事宜

除了上面两个以外,tasktracker被NodeManager(简写NM)替代,RM与NM构成了集群的计算平台。这种设计允许NM上长期运行一些辅助服务,这些辅助服务一般都是应用相关的,通过配置项指定,在NM启动时加载。例如在yarn上运行mapreduce程序时,shuffle就是一个由NM加载起来的辅助服务。需要注意的是,在hadoop 0.23之前的版本,shuffle是tasktracker的一部分。

与每个应用相关的AM是一个框架类库,它与RM沟通协商如何分配资源,与NM协同执行并且监测应用的执行情况。在yarn的设计中,mapreduce只是一种编程模式,yarn还允许像MPI(message passing interface),Spark等应用构架部署在yarn上运行。

2. Yarn设计


上图是一个典型的YARN集群。可以看到RM有两个主要服务:

  • 可插拔的Scheduler,只负责用户提交任务的调度
  • ApplicationsMaster的(简写AsM)负责管理集群中每个任务的ApplicationMaster(简写AM),负责任务的监控、失败重起等

在hadoop1.0时,资源分配的单位是slot,再具体分为map的slot与reduce的slot,而且这些slot的个数是在任务运行前事先定义的,在任务运行过程中不能改变,很明显,这会造成资源的分配不均问题。在haodop2.0中,yarn采用了container的概念来分配资源。每个container由一些可以动态改变的属性组成,到现在为止,仅支持内存、cpu两种。但是yarn的这种资源管理方式是通用的,社区以后会加入更多的属性,比如网络带宽,本地硬盘大小等等。

3. Yarn主要组件

在这小节里,主要介绍yarn各个组件,以及他们之间是如何通信的。

3.1 Client<—>RM

上面这个图是Client向RM提交任务时的流程。
(1) Client通过New Application Request来通知RM中的AsM组建
(2) AsM一般会返回一个新生成的全局ID,除此之外,传递的信息还有集群的资源状况,这样Client就可以在需要时请求资源来运行任务的第一个container即AM。
(3) 之后,Client就可以构造并发送ASC了。ASC中包括了调度队列,优先级,用户认证信息,除了这些基本的信息之外,还包括用来启动AM的CLC信息,一个CLC中包括jar包、依赖文件、安全token,以及运行任务过程中需要的其他文件。

经过上面这三步,一个Client就完成了一次任务的提交。之后,Client可以直接通过RM查询任务的状态,在必要时,可以要求RM杀死这个应用。如下图:

3.2 RM<—>AM

RM在收到Client端发送的ASC后,它会查询是否有满足其资源要求的container来运行AM,找到后,RM会与那个container所在机器上的NM通信,来启动AM。下面这个图描述了这其中的细节。

(1) AM向RM注册,这个过程包括handshaking过程,并且传递一些信息,包括AM监听的RPC端口、用于监测任务运行状态的URL等。
(2) RM中的Scheduler部件做回应。这个过程会传递AM所需的信息,比如这个集群的最大与最小资源使用情况等。AM利用这些信息来计算并请求任务所需的资源。
(3) 这个过程是AM向RM请求资源。传递的信息主要包含请求container的列表,还有可能包含这个AM已经释放的container的列表。
(4) 在AM经过(3)请求资源之后,在稍微晚些时候,会把心跳包与任务进度信息发送给RM
(5) Scheduler在收到AM的资源请求后,会根据调度策略,来分配container以满足AM的请求。
(6) 在任务完成后,AM会给RM发送一个结束消息,然后退出。

在上面(5)与(6)之间,AM在收到RM返回的container列表后,会与每个container所在机器的NM通信,来启动这个container,下面就说说这个过程。

3.2 AM<—>NM


(1) AM向container所在机器的NM发送CLC来启动container
(2)(3) 在container运行过程中,AM可以查询它的运行状态

4. API

通过上面的描述,开发者在开发YARN上的应用时主要需要关注以下接口:

5. 总结

用户在使用hadoop1.0 API编写的MapReduce可以不用修改直接运行在yarn上,不过随着yarn的发展,向后兼容性还不知道怎么样。不管怎样,新的yarn平台绝对值得我们使用。

Yarn概述的更多相关文章

  1. Hadoop - YARN 概述

    一 概述       Apache Hadoop YARN (Yet Another Resource Negotiator,还有一种资源协调者)是一种新的 Hadoop 资源管理器,它是一个通用资源 ...

  2. Yarn概述——FAST, RELIABLE, AND SECURE DEPENDENCY MANAGEMENT

    官网链接:https://yarnpkg.com/lang/en/ 特性 Ultra Fast. Yarn caches every package it downloads so it never ...

  3. 初始Yarn

    YARN 产生背景 MapReduce1.x存在的问题:单点故障&节点压力大.不易扩展 资源利用率&运维成本 催生了YARN的诞生 YARN:不同计算框架可以共享同一个HDFS集群上的 ...

  4. Hadoop学习之路(二十四)YARN的资源调度

    YARN 1.1.YARN 概述 YARN(Yet Another Resource Negotiator) YARN 是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操 作系 ...

  5. hadoop2.x学习笔记(一):YARN

    一.YARN产生的背景 MapReduce1.x存在的问题:单点故障&节点压力大不易扩展. 资源利用率&成本 催生了YARN的诞生  不同计算框架可以共享同一个HDFS集群上的数据,享 ...

  6. 大数据入门第八天——MapReduce详解(三)MR的shuffer、combiner与Yarn集群分析

    /mr的combiner /mr的排序 /mr的shuffle /mr与yarn /mr运行模式 /mr实现join /mr全局图 /mr的压缩 今日提纲 一.流量汇总排序的实现 1.需求 对日志数据 ...

  7. MapReduce(五) mapreduce的shuffle机制 与 Yarn

    一.shuffle机制 1.概述 (1)MapReduce 中, map 阶段处理的数据如何传递给 reduce 阶段,是 MapReduce 框架中最关键的一个流程,这个流程就叫 Shuffle:( ...

  8. Hadoop(七)YARN的资源调度

    一.YARN 概述 YARN 是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操 作系统平台,而 MapReduce 等运算程序则相当于运行于操作系统之上的应用程序 YARN ...

  9. Spark on YARN简介与运行wordcount(master、slave1和slave2)(博主推荐)

    前期博客 Spark on YARN模式的安装(spark-1.6.1-bin-hadoop2.6.tgz +hadoop-2.6.0.tar.gz)(master.slave1和slave2)(博主 ...

随机推荐

  1. Iocomp控件教程之Pie Chart——饼状图控件

    Pie Chart--饼状图控件(Pie Chart)以饼状图形式显示每一个项目内容所占的百分比比重.在设计时.能够使用属性编辑器加入或者移除项目以及更改属性值.在执行时.使用AddItem,Remo ...

  2. function(window, undefined)的意义

    var num = 10000 for (var i = 0; i++; i < num) { eval("pp" + i + "=" + i); } ( ...

  3. UVA1614(贪心)

    Hell on the Markets Time Limit:3000MS   Memory Limit:Unknown   64bit IO Format:%lld & %llu [Subm ...

  4. oracle 存储过程 变量的声明和赋值的3种方式

      oracle 存储过程 变量的声明和赋值的3种方式 CreationTime--2018年8月31日16点00分 Author:Marydon 1.声明变量的3种方式 按照数据类型的声明方式进行区 ...

  5. PHP-汇总CGI、FastCGI、PHP-CGI、PHP-FPM、Spawn-FCGI

    什么是CGI 1.CGI是HTTP协议与其他外部应用程序之间的一个接口标准 2.CGI程序或脚本(CGI程序通过HTTP服务器去执行时, 必须在CGI程序中制定其执行程序的完整路径, 使SHELL能找 ...

  6. js 将网页生成为html保存访问

    2012-04-03 今天实现了一个需求,主题是将浏览中的网页生成html保存起来,记录访问url,挂在公司网站上做案例.     首先忙活了N久的是去搜索生成html的js函数.   什么IE自带的 ...

  7. C++模板类内友元(友元函数,友元类)声明的三种情况

    根据<C++ Primer>第三版16.4节的叙述,C++类模板友元分为以下几种情况 1.非模板友元类或友元函数. 书上给了一个例子: class Foo{     void bar(); ...

  8. B/S打印解决方案参考

    使用Lodop 插件,该插件占用8000端口,未使用过,仅知依赖浏览器打印 http://blog.csdn.net/harderxin/article/details/17262945 强大的web ...

  9. Django模版中的过滤器详细解析 Django filter大全

    就象本章前面提到的一样,模板过滤器是在变量被显示前修改它的值的一个简单方法. 过滤器看起来是这样的: {{ name|lower }} 显示的内容是变量 {{ name }} 被过滤器 lower 处 ...

  10. PHP is_callable 方法

    is_callable (PHP 4 >= 4.0.6, PHP 5) is_callable — 验证变量的内容是否能够进行函数调用 Description bool is_callable  ...