收获:

  1、积性函数的积也是积性函数,基本的积性函数:常数函数,正比例函数,欧拉函数,Mobius函数,积性函数一般都知道表达式,所以一般都可以在线性筛时搞定。

  2、遇到整除求和时,这个东西就已经是最简了,所以可以考虑提出它,然后尝试搞后边的东西的前缀和,如果可以成功,那么就可以在O(sqrt(n))的复杂度做了。

 /**************************************************************
Problem: 2693
User: idy002
Language: C++
Result: Accepted
Time:4692 ms
Memory:118504 kb
****************************************************************/ #include <cstdio>
#include <iostream>
#define M 100000009
using namespace std; typedef long long dnt; int prm[], isnot[], mu[], dm[], ptot; void init( int n ) {
mu[] = ;
dm[] = ;
for( int i=; i<=n; i++ ) {
if( !isnot[i] ) {
prm[++ptot] = i;
mu[i] = -;
dm[i] = (dnt)i*(-i) % M;
}
for( int j=; j<=ptot && i*prm[j]<=n; j++ ) {
int k = i*prm[j];
isnot[k] = true;
if( i%prm[j]== ) {
mu[k] = ;
dm[k] = (dnt)k/i*dm[i] % M;
break;
}
mu[k] = -mu[i];
dm[k] = (dnt)dm[i]*dm[prm[j]] % M;
}
}
for( int i=; i<=n; i++ ) {
dm[i] += dm[i-];
if( dm[i]>=M ) dm[i]-=M;
if( dm[i]< ) dm[i]+=M;
}
}
inline dnt S( dnt n, dnt m ) {
return ((+n)*n/%M) * ((+m)*m/%M) % M;
}
dnt calc( int n, int m ) {
if( n>m ) swap(n,m);
dnt rt = ;
for( dnt d=; d<=n; d++ ) {
dnt dd = min( n/(n/d), m/(m/d) );
rt += S(n/d,m/d) * (dm[dd]-dm[d-]) % M;
if( rt>=M ) rt-=M;
if( rt< ) rt+=M;
d = dd;
}
return rt;
}
int main() {
init();
int T;
scanf( "%d", &T );
while( T-- ) {
int n, m;
scanf( "%d%d", &n, &m );
printf( "%lld\n", calc(n,m) );
}
}

bzoj 2693的更多相关文章

  1. 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)

    BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...

  2. 【BZOJ 2693】jzptab(莫比乌斯+分块)

    2693: jzptab Description Input 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M Output T行 每行一个整数 表示第i组数据的结果 Sample I ...

  3. [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)

    题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑N​y=1∑M​lim(x, ...

  4. bzoj 2693: jzptab 线性筛积性函数

    2693: jzptab Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 444  Solved: 174[Submit][Status][Discus ...

  5. ●BZOJ 2693 jzptab

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2693 题解: 莫比乌斯反演 先看看这个题,BZOJ 2154 Crash的数字表格,本题的升 ...

  6. BZOJ 2693: jzptab [莫比乌斯反演 线性筛]

    2693: jzptab Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1194  Solved: 455[Submit][Status][Discu ...

  7. BZOJ 2693 jzptab

    http://www.lydsy.com/JudgeOnline/problem.php?id=2693 题解: 考虑把lcm转化成gcd那答案就是然后神奇的设:就有:一样可以枚举 的取值,这是O(√ ...

  8. BZOJ 2693: jzptab( 莫比乌斯反演 )

    速度居然#2...目测是因为我没用long long.. 求∑ lcm(i, j) (1 <= i <= n, 1 <= j <= m) 化简之后就只须求f(x) = x∑u( ...

  9. BZOJ 2693 jzptab ——莫比乌斯反演

    同BZOJ 2154 但是需要优化 $ans=\sum_{d<=n}d*\sum_{i<=\lfloor n/d \rfloor} i^2 *\mu(i)* Sum(\lfloor \fr ...

随机推荐

  1. MSSQL 详解SQL Server连接(内连接、外连接、交叉连接)

    在查询多个表时,我们经常会用“连接查询”.连接是关系数据库模型的主要特点,也是它区别于其它类型数据库管理系统的一个标志. 什么是连接查询呢? 概念:根据两个表或多个表的列之间的关系,从这些表中查询数据 ...

  2. hdu 5373 The shortest problem(杭电多校赛第七场)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5373 The shortest problem Time Limit: 3000/1500 MS (J ...

  3. 美团实习Java岗面经,已拿offer

    作者:icysnowgx 链接:https://www.nowcoder.com/discuss/71954?type=2&order=3&pos=10&page=1 来源:牛 ...

  4. Linux mint 18.1 / Ubuntu 16.04 安装steam

    这里以Limit Mint 18.1为例: 安装steam: sudo dpkg -i steam.deb 运行后会有如下错误: 直接运行如下命令修复, 并自动启动steam: LD_PRELOAD= ...

  5. redis基础之redis-sentinel(哨兵集群)(六)

    前言 redis简单的主从复制在生产的环境下可能是不行的,因为从服务器只能读不能写,如果主服务器挂掉,那么整个缓存系统不能写入了:redis自带了sentinel(哨兵)机制可以实现高可用. redi ...

  6. 版本控制软件——tortoiseSVN的基础使用

    零 基本功能介绍... 2 一 安装及下载client端... 2 二 登陆和文件下载... 2 三 新增档案及目录到服务器中... 4 四 文件对比... 13 4.1 文件回溯... 13 4.2 ...

  7. 2.rabbitmq 工作队列

    1. 生产者 #coding:utf8 import pika import json import sys message = ''.join(sys.argv[1:]) or "hell ...

  8. 深度学习方法(八):自然语言处理中的Encoder-Decoder模型,基本Sequence to Sequence模型

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld.技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. Encoder-Decoder(编码- ...

  9. STL中stack/queue/map以及Boost unordered_map 的使用方法

    一.stackstack 模板类的定义在<stack>头文件中.stack 模板类需要两个模板参数,一个是元素类型,一个容器类型,但只有元素类型是必要的,在不指定容器类型时,默认的容器类型 ...

  10. python正则表达式教程

    原文这里,非常实用,转载一下 再来一篇,两篇一起看,美滋滋 本文介绍了Python对于正则表达式的支持,包括正则表达式基础以及Python正则表达式标准库的完整介绍及使用示例.本文的内容不包括如何编写 ...