简化版SMO算法标注
'''
随机选择随机数,不等于J
'''
def selectJrand(i,m):
j=i #we want to select any J not equal to i
while (j==i):
j = int(random.uniform(0,m)) # 一直在挑选随机数j,直到不等于i,随机数的范围在0~m
return j # 返回挑选好的随机数 '''
门限函数
'''
def clipAlpha(aj,H,L): # 最大不能超过H,最小不能低于L
if aj > H:
aj = H
if L > aj:
aj = L
return aj '''
简化版的SMO函数
'''
def smoSimple(dataMatIn, classLabels, C, toler, maxIter): # 输入数据,标记,常数C,容错率,最大迭代次数
dataMatrix = mat(dataMatIn); # 转换成矩阵
labelMat = mat(classLabels).transpose() # 转换成矩阵,并转置,标记成为一个列向量,每一行和数据矩阵对应
m,n = shape(dataMatrix) # 行,列 b = 0; # 参数b的初始化
alphas = mat(zeros((m,1))) # 参数alphas是个list,初始化也是全0,大小等于样本数
iter = 0 # 当前迭代次数,maxIter是最大迭代次数 while (iter < maxIter): # 当超过最大迭代次数,推出
alphaPairsChanged = 0 # 标记位,记录alpha在该次循环中,有没有优化
for i in range(m): # 第i个样本
fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b # 第i样本的预测类别
Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions # 误差 #是否可以继续优化
if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):
j = selectJrand(i,m) # 随机选择第j个样本
fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b # 样本j的预测类别
Ej = fXj - float(labelMat[j]) # 误差 alphaIold = alphas[i].copy(); # 拷贝,分配新的内存
alphaJold = alphas[j].copy(); if (labelMat[i] != labelMat[j]):
L = max(0, alphas[j] - alphas[i])
H = min(C, C + alphas[j] - alphas[i])
else:
L = max(0, alphas[j] + alphas[i] - C)
H = min(C, alphas[j] + alphas[i]) if L==H: print "L==H"; continue eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T if eta >= 0: print "eta>=0"; continue alphas[j] -= labelMat[j]*(Ei - Ej)/eta
alphas[j] = clipAlpha(alphas[j],H,L) # 门限函数阻止alpha_j的修改量过大 #如果修改量很微小
if (abs(alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; continue # alpha_i的修改方向相反
alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#update i by the same amount as j
#the update is in the oppostie direction
# 为两个alpha设置常数项b
b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
if (0 < alphas[i]) and (C > alphas[i]): b = b1
elif (0 < alphas[j]) and (C > alphas[j]): b = b2
else: b = (b1 + b2)/2.0 # 说明alpha已经发生改变
alphaPairsChanged += 1
print "iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged) #如果没有更新,那么继续迭代;如果有更新,那么迭代次数归0,继续优化
if (alphaPairsChanged == 0): iter += 1
else: iter = 0
print "iteration number: %d" % iter # 只有当某次优化更新达到了最大迭代次数,这个时候才返回优化之后的alpha和b
return b,alphas
简化版SMO算法标注的更多相关文章
- 支持向量机-SMO算法简化版
SMO:序列最小优化 SMO算法:将大优化问题分解为多个小优化问题来求解 SMO算法的目标是求出一系列的alpha和b,一旦求出这些alpha,就很容易计算出权重向量w,并得到分隔超平面 工作原理:每 ...
- 机器学习——支持向量机(SVM)之拉格朗日乘子法,KKT条件以及简化版SMO算法分析
SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM ...
- 机器学习——支持向量机(SVM)之Platt SMO算法
Platt SMO算法是通过一个外循环来选择第一个alpha值的,并且其选择过程会在两种方式之间进行交替: 一种方式是在所有数据集上进行单遍扫描,另一种方式则是在非边界alpha中实现单遍扫描. 所谓 ...
- SMO算法精解
本文参考自:https://www.zhihu.com/question/40546280/answer/88539689 解决svm首先将原始问题转化到对偶问题,而对偶问题则是一个凸二次规划问题,理 ...
- ML-求解 SVM 的SMO 算法
这算是我真正意义上认真去读的第一篇ML论文了, but, 我还是很多地方没有搞懂, 想想, 缓缓吧, 还是先熟练调用API 哈哈 原论文地址: https://www.microsoft.com/en ...
- 支持向量机原理(四)SMO算法原理
支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五) ...
- SVM-非线性支持向量机及SMO算法
SVM-非线性支持向量机及SMO算法 如果您想体验更好的阅读:请戳这里littlefish.top 线性不可分情况 线性可分问题的支持向量机学习方法,对线性不可分训练数据是不适用的,为了满足函数间隔大 ...
- 改进的SMO算法
S. S. Keerthi等人在Improvements to Platt's SMO Algorithm for SVM Classifier Design一文中提出了对SMO算法的改进,纵观SMO ...
- [笔记]关于支持向量机(SVM)中 SMO算法的学习(一)理论总结
1. 前言 最近又重新复习了一遍支持向量机(SVM).其实个人感觉SVM整体可以分成三个部分: 1. SVM理论本身:包括最大间隔超平面(Maximum Margin Classifier),拉格朗日 ...
随机推荐
- idea scala 报 with UTF-8 Please try specifying another one using the -encoding option
现象如下图, 代码里有汉字,执行代码报错,说编码格式不对, 修改方式如上面,将右下角的编码格式修改成 u8即可.
- Struts2(一.基本介绍,环境搭建及需求分析)
Struts2框架开发 前言 开发工具:eclipse struts1:老项目使用较多,维护时需要用到 struts2:新项目使用较多 一.特点 1. 无侵入式设计 struts2 与 struts ...
- 排序(C语言实现)
读数据结构与算法分析 插入排序 核心:利用的是从位置0到位置P都是已排序的 所以从位置1开始排序,如果当前位置不对,则和前面元素反复交换重新排序 实现 void InsertionSort(Eleme ...
- ZOJ 3962
就是统计1~n中出现的各个数字的次数,当然是在16进制下. 不过有个区间问题的小技巧,统计从 [x,y] 可以转换成 从 [1,y] 减去 [1,x-1]. 不过要分类讨论一下,因为有可能会出现溢出, ...
- 阿里IPO法律咨询费达1580万美元 为Facebook六倍
据路透社报道,阿里巴巴集团周五在 IPO (首次公开招股)更新文件中披露,将向美国盛信律师事务所(Simpson Thacher)以及其他为 IPO 提供咨询服务的律师事务所支付 1580 万美元的法 ...
- 如何计算FOB价格
FOB价格是国际贸易术语常有的一种算法,针对不同的对象,FOB价格也有不一样的算法.对于做外贸生意的朋友,需要了解FOB价格以及各项费用名称,以及如何计算FOB价格. FOB价格是国际FOB价格语常有 ...
- python中的os.walk
原文出处:https://www.jianshu.com/p/bbad16822eab python中os.walk是一个简单易用的文件.目录遍历器,可以帮助我们高效的处理文件.目录方面的事情. 1. ...
- ionic 开发实例
ionic 开发实例 一.ionic初始化项目 1:安装ionic npm install -g ionic 2:初始化项目框架 我们可以用命令创建一个应用程序,可以使用我们的一个现成的应用程序模板, ...
- Mac安装jee开发环境,webservice环境搭建
一.下载安装包 jdk(去官网下载) eclipse (去官网下载) tomcat(官网有9.0了)http://tomcat.apache.org/download-80.cgi#8.0.32 下载 ...
- ViewController 视图控制器的常用方法
ViewController 视图控制器 ,是控制界面的控制器,通俗的来说,就是管理我们界面的大boss,视图控制器里面包含了视图,下面举个例子,让视图在两个视图上调转. 定义一个视图控制器: MyV ...