题目:

Given any positive integer N, you are supposed to find all of its prime factors, and write them in the format N = p1^k1 * p2^k2 *...*pm^km.

输入描述:

Each input file contains one test case which gives a positive integer N in the range of long int.

输出描述:

Factor N in the format N = p1^k1 * p2^k2 *...*pm^km, where pi's are prime factors of N in increasing order, and the exponent ki is the number of pi -- hence when there is only one pi, ki is 1 and must NOT be printed out.

输入例子:

97532468

输出例子:

97532468=2^2*11*17*101*1291

思路:

本题是正整数n的质因子分解问题。n分为3种情况:

1、n=1,特殊数据,既不是质数也不能分解,直接按指定格式输出即可。

2、n是素数,不用分解,直接按指定格式输出即可。要判别n是否为质数,有多种方法,对于本题而言,最简单的方法是使用试商法。因为即使对于n=2147483647=2^31-1范围内的整数,用试商法效率也是很高的,具体参见下面给出的代码。

3、n是大于1的非质数,这正是本题要完成的工作。可以从最小的素数2开始,依次用2,3,4,5,...,sqrt(n)对n进行分解。因为当对2进行分解时,后面关于2的倍数的其他数字也就不能被n整除了,因此也就只对质数的进行计算,记得每次结束某个数字的因式分解之后,更新一下sqrt(n)。

当然,可以考虑采用筛法,事先把一定范围内的质数全部筛选出来,存入数组,然后只用这些质数去分解n,效率会相应提高很多。

(4)本题还有一点需要注意,即打印的格式。

代码:

在线测试:http://www.nowcoder.com/questionTerminal/ea8f62f661554099baed9baa471c6883?orderByHotValue=1&done=0&pos=6&onlyReference=false

AC代码:

#include<iostream>
#include<math.h> using namespace std; bool isPrime(int n){
if(n<2)
return false;
int k=int(sqrt(n+0.0));
for(int i=2;i<=k;i++){
if(n%i==0)
return false;
}
return true;
} void PrimeFactor(int n){
cout<<n<<"=";
if(n==1){
cout<<n<<endl;
return;
}
if(isPrime(n)){
cout<<n<<endl;
return;
} int k=int(sqrt(n+0.0));
int exp=0;
bool first=true; for(int i=2;i<=k;i++){
exp=0;
if(n%i==0){
while(n%i==0){
n=n/i;
++exp;
}
if(first){
if(exp>=2) cout<<i<<"^"<<exp;
else cout<<i;
first=false;
}
else{
if(exp>=2) cout<<"*"<<i<<"^"<<exp;
else cout<<"*"<<i;
}
k=int(sqrt(n+0.0));
}
} if(n>1) cout<<"*"<<n;
cout<<endl;
} int main(){
int n;
while(cin>>n){
PrimeFactor(n);
}
return 0;
}

(笔试题)质数因子Prime Factor的更多相关文章

  1. 杭电 2136 Largest prime factor(最大素数因子的位置)

    Largest prime factor Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  2. 剑指Offer——美团内推+校招笔试题+知识点总结

    剑指Offer--美团内推+校招笔试题+知识点总结 前言 美团9.9内推笔试.9.11校招笔试,反正就是各种虐,笔试内容如下: 知识点:图的遍历(DFS.BFS).进程间通信.二叉查找树节点的删除及中 ...

  3. C 2010年笔试题

    1 有一个函数, 写一段程序,输入的值,输出的值. #include <stdio.h> void main() { int x,y; printf("输入x:"); ...

  4. 嵌入式Linux C笔试题积累(转)

    http://blog.csdn.net/h_armony/article/details/6764811 1.   嵌入式系统中断服务子程序(ISR) 中断是嵌入式系统中重要的组成部分,这导致了很 ...

  5. Problem 3: Largest prime factor

    The prime factors of 13195 are 5, 7, 13 and 29. What is the largest prime factor of the number 60085 ...

  6. R语言学习——欧拉计划(3)Largest prime factor 求最大质因数

    The prime factors of 13195 are 5, 7, 13 and 29. What is the largest prime factor of the number 60085 ...

  7. HDU 2136 素数打表+求质数因子

    Largest prime factor Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  8. [暑假集训--数论]hdu2136 Largest prime factor

    Everybody knows any number can be combined by the prime number. Now, your task is telling me what po ...

  9. The largest prime factor(最大质因数)

    1. 问题: The prime factors of 13195 are 5, 7, 13 and 29.What is the largest prime factor of the number ...

随机推荐

  1. scrapy抓取拉勾网职位信息(七)——实现分布式

    上篇我们实现了数据的存储,包括把数据存储到MongoDB,Mysql以及本地文件,本篇说下分布式. 我们目前实现的是一个单机爬虫,也就是只在一个机器上运行,想象一下,如果同时有多台机器同时运行这个爬虫 ...

  2. python 什么是全局解释器锁GIL

    什么是全局解释器锁GIL Python代码的执行由Python 虚拟机(也叫解释器主循环,CPython版本)来控制,Python 在设计之初就考虑到要在解释器的主循环中,同时只有一个线程在执行,即在 ...

  3. java8新特性——并行流与顺序流

    在我们开发过程中,我们都知道想要提高程序效率,我们可以启用多线程去并行处理,而java8中对数据处理也提供了它得并行方法,今天就来简单学习一下java8中得并行流与顺序流. 并行流就是把一个内容分成多 ...

  4. 【BZOJ 2121】 (字符串DP,区间DP)

    2121: 字符串游戏 Description BX正在进行一个字符串游戏,他手上有一个字符串L,以及其他一些字符串的集合S,然后他可以进行以下操作:对于一个在集合S中的字符串p,如果p在L中出现,B ...

  5. 洛谷P1149 火柴棒等式

    题目描述 给你n根火柴棍,你可以拼出多少个形如“A+B=C”的等式?等式中的A.B.C是用火柴棍拼出的整数(若该数非零,则最高位不能是0).用火柴棍拼数字0-9的拼法如图所示: 注意: 1.加号与等号 ...

  6. 「APIO2018选圆圈」

    「APIO2018选圆圈」 题目描述 在平面上,有 \(n\) 个圆,记为 \(c_1, c_2, \ldots, c_n\) .我们尝试对这些圆运行这个算法: 找到这些圆中半径最大的.如果有多个半径 ...

  7. zend studio10 创建重复project from remote server

    zend studio10创建重复project from remote server [本地远程到dev服务器]1.删掉已存在project隐藏文件.project .build2.如果zend10 ...

  8. Java并发(十):读写锁ReentrantReadWriteLock

    先做总结: 1.为什么用读写锁 ReentrantReadWriteLock? 重入锁ReentrantLock是排他锁,在同一时刻仅有一个线程可以进行访问,但是在大多数场景下,大部分时间都是提供读服 ...

  9. Shell基础学习(三) 传递参数

    我们可以在执行 Shell 脚本时,向脚本传递参数,脚本内获取参数的格式为:$n.n 代表一个数字,1 为执行脚本的第一个参数,2 为执行脚本的第二个参数,以此类推…… 以下实例我们向脚本传递三个参数 ...

  10. git中:关于origin和master

    git的服务器端(remote)端包含多个repository,每个repository可以理解为一个项目.而每个repository下有多个branch."origin"就是指向 ...