Nowcoder 挑战赛23 B 游戏 ( NIM博弈、SG函数打表 )
题意 : 中文题、点链接
分析 :
前置技能是 SG 函数、NIM博弈变形
每次可取石子是约数的情况下、那么就要打出 SG 函数
才可以去通过异或操作判断一个局面的胜负
打 SG 函数的时候、由于 N 很大
所以不能使用递归的方式打表、会爆栈
还有要预处理每个数的约数
打出 SG 函数之后
暴力判断初始局面的每堆石子取走约数后是否对答案产生贡献
#include<bits/stdc++.h> #define LL long long #define ULL unsigned long long #define scl(i) scanf("%lld", &i) #define scll(i, j) scanf("%lld %lld", &i, &j) #define sclll(i, j, k) scanf("%lld %lld %lld", &i, &j, &k) #define scllll(i, j, k, l) scanf("%lld %lld %lld %lld", &i, &j, &k, &l) #define scs(i) scanf("%s", i) #define sci(i) scanf("%d", &i) #define scd(i) scanf("%lf", &i) #define scIl(i) scanf("%I64d", &i) #define scii(i, j) scanf("%d %d", &i, &j) #define scdd(i, j) scanf("%lf %lf", &i, &j) #define scIll(i, j) scanf("%I64d %I64d", &i, &j) #define sciii(i, j, k) scanf("%d %d %d", &i, &j, &k) #define scddd(i, j, k) scanf("%lf %lf %lf", &i, &j, &k) #define scIlll(i, j, k) scanf("%I64d %I64d %I64d", &i, &j, &k) #define sciiii(i, j, k, l) scanf("%d %d %d %d", &i, &j, &k, &l) #define scdddd(i, j, k, l) scanf("%lf %lf %lf %lf", &i, &j, &k, &l) #define scIllll(i, j, k, l) scanf("%I64d %I64d %I64d %I64d", &i, &j, &k, &l) #define lson l, m, rt<<1 #define rson m+1, r, rt<<1|1 #define lowbit(i) (i & (-i)) #define mem(i, j) memset(i, j, sizeof(i)) #define fir first #define sec second #define VI vector<int> #define ins(i) insert(i) #define pb(i) push_back(i) #define pii pair<int, int> #define VL vector<long long> #define mk(i, j) make_pair(i, j) #define all(i) i.begin(), i.end() #define pll pair<long long, long long> #define _TIME 0 #define _INPUT 0 #define _OUTPUT 0 clock_t START, END; void __stTIME(); void __enTIME(); void __IOPUT(); using namespace std; ; int SG[maxn]; VI divisor[maxn]; inline void init() { ; i<maxn; i++) for(int j=i; j<maxn; j+=i) divisor[j].pb(i); SG[] = ; ; i<maxn; i++){ set<int> s; ; j<(int)divisor[i].size(); j++) s.ins(SG[i-divisor[i][j]]); ;;j++) if(!s.count(j)){ SG[i] = j; break; } } } int arr[maxn]; int main(void){__stTIME();__IOPUT(); init(); int n; sci(n); ; ; i<n; i++) sci(arr[i]), xorSum ^= SG[arr[i]]; ; ; i<n; i++){ ; j<(int)divisor[arr[i]].size(); j++){ if((xorSum ^ SG[arr[i]] ^ SG[arr[i] - divisor[arr[i]][j]]) == ) ans++; } } printf("%d\n", ans); __enTIME();;} void __stTIME() { #if _TIME START = clock(); #endif } void __enTIME() { #if _TIME END = clock(); cerr<<"execute time = "<<(double)(END-START)/CLOCKS_PER_SEC<<endl; #endif } void __IOPUT() { #if _INPUT freopen("in.txt", "r", stdin); #endif #if _OUTPUT freopen("out.txt", "w", stdout); #endif }
Nowcoder 挑战赛23 B 游戏 ( NIM博弈、SG函数打表 )的更多相关文章
- hdu 5795 A Simple Nim 博弈sg函数
A Simple Nim Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Pro ...
- 51 nod1067 Bash游戏 V2(sg函数打表)
1067 Bash游戏 V2 1.0 秒 131,072.0 KB 5 分 1级题 有一堆石子共有N个.A B两个人轮流拿,A先拿.每次只能拿1,3,4颗,拿到最后1颗石子的人获胜.假设A B都非 ...
- POJ 2311 Cutting Game(Nim博弈-sg函数/记忆化搜索)
Cutting Game 题意: 有一张被分成 w*h 的格子的长方形纸张,两人轮流沿着格子的边界水平或垂直切割,将纸张分割成两部分.切割了n次之后就得到了n+1张纸,每次都可以选择切得的某一张纸再进 ...
- hdu 3032 Nim or not Nim? (sg函数打表找规律)
题意:有N堆石子,每堆有s[i]个,Alice和Bob两人轮流取石子,可以从一堆中取任意多的石子,也可以把一堆石子分成两小堆 Alice先取,问谁能获胜 思路:首先观察这道题的数据范围 1 ≤ N ...
- 51nod_1714:B君的游戏(博弈 sg打表)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1714 nim游戏的一个变形,需要打出sg函数的表 #incl ...
- UPCOJ9526(SG函数打表,nim游戏异或规则)
#include<bits/stdc++.h>using namespace std;int f[1007],SG[1007],S[1007];//f为可以选取的石头个数,SG为sg函数, ...
- 51nod 1714:B君的游戏(博弈 sg打表)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1714 nim游戏的一个变形,需要打出sg函数的表 #incl ...
- (转)博弈 SG函数
此文为以下博客做的摘要: https://blog.csdn.net/strangedbly/article/details/51137432 ---------------------------- ...
- 尼姆博弈+SG函数
博弈这个东西真的很费脑诶.. 尼姆博奕(Nim Game):游戏者轮流从一堆棋子(或者任何道具)中取走一个或者多个,最后不能再取的就是输家.当指定相应数量时,一堆这样的棋子称作一个尼姆堆 当n堆棋子的 ...
随机推荐
- Kick Start 2019 Round A Parcels
题目大意 $R \times C$ 的网格,格子间的距离取曼哈顿距离.有些格子是邮局.现在可以把至多一个不是邮局的格子变成邮局,问每个格子到最近的邮局的曼哈顿距离的最大值最小是多少. 数据范围 $ 1 ...
- java-selenium浏览器常用操作命令
一.浏览器操作命令 启动火狐浏览器(49版本以下) System.setProperty("webdriver.firefox.bin","D:\\Firefox\\fi ...
- python中的并发执行
一. Gevent实例 import gevent import requests from gevent import monkey # socket发送请求以后就会进入等待状态,gevent更改了 ...
- 实现远程线程DLL注入
### 32位:远程线程注入 远程线程注入是最常用的一种注入技术,该技术利用的核心API是 `CreateRemoteThread()` 这个API可以运行远程线程,其次通过创建的线程调用 `Load ...
- Windows 2008 R2阿里云安全基线检查
设置密码使用期限策略在管理工具打开本地安全策略,打开路径:安全设置\帐户策略\密码策略,将密码最长使用期限设置为30-180之间,建议值为90,将密码最短使用期限设置为1-14之间,建议值为7. 风险 ...
- leecode刷题(26)-- 用栈实现队列
leecode刷题(26)-- 用栈实现队列 用栈实现队列 使用栈实现队列的下列操作: push(x) -- 将一个元素放入队列的尾部. pop() -- 从队列首部移除元素. peek() -- 返 ...
- sql--left join,right join, inner join
left join(左联接) 返回包括左表中的所有记录和右表中联结字段相等的记录 right join(右联接) 返回包括右表中的所有记录和左表中联结字段相等的记录inner join(等值连接) 只 ...
- 第二章 单表查询 T-SQL语言基础(2)
单表查询(2) 2.2 谓词和运算符 T-SQL有几种不同的语言元素可以指定逻辑表达式,例如,查询过滤器(WHERE和HAVING),CHECK约束,等等. 在逻辑表达式中可以使用各种谓词(取值为TR ...
- bzoj 3837 pa2013 Filary
bzoj 先搞第一问.考虑简单情况,如果\(m=2\),那么一定有个剩余类大小\(\ge \lceil\frac{n}{2}\rceil\),同时这也是答案下界 然后我们每次随机选出一个数\(a_i\ ...
- MySQL 必备工具使用的6个锦囊妙计!
这款工具是 MySQL 一个重要分支 percona 的,名称叫做 percona-toolkit(一把锋利的瑞士军刀),它呢是一组命令的集合.今儿给大家介绍几个我们在生产环境中最长用到的. 工具包的 ...