you_are_the_one(区间dp)
You Are the One
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6711 Accepted Submission(s): 3341
The next n line are n integer D1-Dn means the value of diaosi of boys (0 <= Di <= 100)
5
1
2
3
4
5
5
5
4
3
2
2
Case #2: 24
本题大意:队列中有n个人,要求从1到n依次上台,每个人上台有一个unhappy值val,假设第i个人
第k个上台那么他所带来的unhappy值为(k - 1) * val[ i ],为了使得unhappy变得足够小,现在允许轮到一个人上台的时候让他进入一个窄巷,窄巷满足先进后出原则,问你通过这个窄巷调整上台顺序,让这n个人都上台后的最小unhappy值为多少。
本题思路:分析容易知道对于第i个人,他是否入栈,何时出栈都会影响到最后的分数,所以我们肯定是要枚举每个人的是否入栈和出入栈状况,我们肯定会枚举每个i,容易想到区间dp,我们用dp[ i ][ j ]表示第 i 到 j 的人已经上台所花费的最小值(仅是i -> j,不考虑其他人),那么选择断点k,我们让i第k个上台,很容易知道它前面的 k - 1个人已经上台了,i第k各上台的花费为(k - 1) * val[ i ],他前面的人肯定是已经上台了的,那就是dp[i + 1][i + k - 1],第k + i ~ j 个人肯定在 i 之后,所以就有了子问题dp[k + i ][ j ],但是在计算这个子问题时肯定是把i + k当作第1个人的,所以在原问题上我们共把每个数多算了k 次,所以就可以得到状态转移方程dp[ i ][ j ] = (k - 1) * val[ i ] + dp[i + 1][i + k - 1] + dp[i + k][ j ] + (sum[ j ] - sum[i + k - 1]) * k。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int maxn = + , inf = 0x3f3f3f3f; int val[maxn], sum[maxn], dp[maxn][maxn];
int n; int main() {
int t, _case = ;
scanf("%d", &t);
while(t --) {
memset(dp, , sizeof dp);
scanf("%d", &n);
for(int i = ; i <= n; i ++) {
scanf("%d", &val[i]);
sum[i] = sum[i - ] + val[i];
}
for(int len = ; len < n; len ++) {
for(int i = ; i + len <= n; i ++) {
int j = i + len;
dp[i][j] = inf;
for(int k = ; k <= len + ; k ++) {
dp[i][j] = min(dp[i][j], (k - ) * val[i] + dp[i + ][i + k - ] + dp[i + k][j] + (sum[j] - sum[i + k - ] ) * k);
}
}
}
printf("Case #%d: %d\n", ++ _case, dp[][n]);
}
return ;
}
you_are_the_one(区间dp)的更多相关文章
- 【BZOJ-4380】Myjnie 区间DP
4380: [POI2015]Myjnie Time Limit: 40 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 162 Solved: ...
- 【POJ-1390】Blocks 区间DP
Blocks Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5252 Accepted: 2165 Descriptio ...
- 区间DP LightOJ 1422 Halloween Costumes
http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...
- BZOJ1055: [HAOI2008]玩具取名[区间DP]
1055: [HAOI2008]玩具取名 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1588 Solved: 925[Submit][Statu ...
- poj2955 Brackets (区间dp)
题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...
- HDU5900 QSC and Master(区间DP + 最小费用最大流)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...
- BZOJ 1260&UVa 4394 区间DP
题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...
- 区间dp总结篇
前言:这两天没有写什么题目,把前两周做的有些意思的背包题和最长递增.公共子序列写了个总结.反过去写总结,总能让自己有一番收获......就区间dp来说,一开始我完全不明白它是怎么应用的,甚至于看解题报 ...
- Uva 10891 经典博弈区间DP
经典博弈区间DP 题目链接:https://uva.onlinejudge.org/external/108/p10891.pdf 题意: 给定n个数字,A和B可以从这串数字的两端任意选数字,一次只能 ...
随机推荐
- [人物存档]【AI少女】【捏脸数据】1224今日份的推荐
点击下载(城通网盘):AISChaF_20191111222714074.png 点击下载(城通网盘):AISChaF_20191108141610951.png
- conda退出base 环境
安装conda后取消命令行前出现的base,取消每次启动自动激活conda的基础环境 方法一: 每次在命令行通过conda deactivate退出base环境回到系统自动的环境 方法二 1,通过 ...
- Java多线程和并发(七),synchronized
目录 1.线程安全的主要原因 2.互斥锁的特性 3.锁的类别 4.类锁和对象锁的总结 七.synchronized 1.线程安全的主要原因 2.互斥锁的特性 Java中synchronized锁的不是 ...
- Python3学习笔记(十一):函数参数详解
一.位置参数 根据参数的位置来传递参数,调用函数时,传递的参数顺序和个数必须和定义时完全一致 # 定义函数 def man(name, age): print("My name is %s, ...
- git远程相关
git remote add origin git仓库地址 // 添加了远程仓库 git remote remove origin // 移除远程仓库 git push -u origin maste ...
- 用JavaScript实现div的鼠标拖拽效果
实现原理鼠标按下时根据onmousemove事件来动态获取鼠标坐标位置以此来更新div的位置,实现的前提时div要有一个定位效果,不然的话是移动不了它的. HTML <div class=&qu ...
- 分布式-信息方式-ActiveMQ示例
实战 代码如下: 信息生产者 package test.mq.helloword; import javax.jms.Connection; import javax.jms.ConnectionFa ...
- webpack3升级webpack4
cnpm i webpck@4 webpack-cli -D cnpm i webpack-cli -D cnpm update npm WARN deprecated extract-text-we ...
- Java并发编程的艺术笔记(九)——FutureTask详解
FutureTask是一种可以取消的异步的计算任务.它的计算是通过Callable实现的,多用于耗时的计算. 一.FutureTask的三种状态 二.get()和cancel()执行示意 三.使用 一 ...
- C++入门经典-例6.2-将二维数组进行行列对换
1:一维数组的初始化有两种,一种是单个逐一赋值,一种是使用聚合方式赋值.聚合方式的例子如下: int a[3]={1,2,3}; int a[]={1,2,3};//编译器能够获得数组元素的个数 in ...