Luogu P5444 [APIO2019]奇怪装置
题目
这种题目看上去就是有循环节的对吧。
在考场上,一个可行的方式是打表。
现在我们手推一下这个循环节。
记函数\(f(t)=(((t+\lfloor\frac tB\rfloor)\%A),(t\%B))\),那么\(f(t_1)=f(t_2)\)的充要条件为:
\]
\]
看到第二个很熟悉的式子,我们不妨设\(t_2=t_1+xB(x>0)\),代入第一个式子得到
\]
后面那坨东西我们把它化简一下,拆开和左边的抵掉就变成了
\]
即
\]
把\(B+1\)移到左边去
\]
也就是说最小循环节为\(xB=\frac{AB}{(A,B+1)}\)。
剩下的做一个简单的区间覆盖即可。
区间覆盖的话左端点升序排序,记录最大右端点即可。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
namespace IO
{
char ibuf[(1<<21)+1],*iS,*iT;
char Get(){return (iS==iT? (iT=(iS=ibuf)+fread(ibuf,1,(1<<21)+1,stdin),(iS==iT? EOF:*iS++)):*iS++);}
ll read(){ll x=0;int c=Get();while(!isdigit(c))c=Get();while(isdigit(c))x=x*10+c-48,c=Get();return x;}
}
using namespace IO;
const int N=1000007;
struct node{ll l,r;}a[N<<1];
int operator<(node a,node b){return a.l<b.l;}
ll max(ll a,ll b){return a>b? a:b;}
int main()
{
int n=read(),m=0,i;ll A=read(),B=read(),M=A/__gcd(A,B+1)*B,l,r,ans=0,mx=0;
for(i=1;i<=n;++i)
{
l=read(),r=read();
if(r-l+1>=M) return !printf("%lld",M);
l%=M,r%=M;
if(l>r) a[++m]=(node){0,r},a[++m]=(node){l,M-1}; else a[++m]=(node){l,r};
}
sort(a+1,a+m+1);
for(i=1;i<=m;++i)
{
if(a[i].l>mx) ans+=a[i].l-mx;
mx=max(mx,a[i].r+1);
}
if(mx<M) ans+=M-mx;
return !printf("%lld",M-ans);
}
Luogu P5444 [APIO2019]奇怪装置的更多相关文章
- P5444 [APIO2019]奇怪装置
传送门 考虑求出最小的循环节 $G$ 使得 $t,t+G$ 得到的数对是一样的 由 $y \equiv t \mod B$ ,得到 $G$ 一定是 $B$ 的倍数,设 $zB=G$,则 $t,t+zB ...
- 洛谷$P5444\ [APIO2019]$奇怪装置 数论
正解:数论 解题报告: 传送门$QwQ$ 我好像当初考的时候这题爆零了,,,部分分都没想到,,,我真的好菜$kk$ 考虑如果在$t_1,t_2$两个时刻有$x_1=x_2,y_1=y_2$是什么情况$ ...
- 【LOJ#3144】[APIO2019]奇怪装置(数论)
[LOJ#3144][APIO2019]奇怪装置(数论) 题面 LOJ 题解 突然发现\(LOJ\)上有\(APIO\)的题啦,赶快来做一做. 这题是窝考场上切了的题嗷.写完暴力之后再推了推就推出正解 ...
- 【LG5444】[APIO2019]奇怪装置
[LG5444][APIO2019]奇怪装置 题面 洛谷 题目大意: 给定\(A,B\),对于\(\forall t\in \mathbb N\),有二元组\((x,y)=((t+\lfloor\fr ...
- 题解-APIO2019奇怪装置
problem loj-3144 题意概要:设函数 \(f(t)\) 的返回值为一个二元组,即 \(f(t)=((t+\lfloor \frac tB\rfloor)\bmod A, t\bmod B ...
- [APIO2019] 奇怪装置
$solution:$ 问题其实就是求两个式子的循环节. 钦定 $t\mod B=0$且 $(t\neq 0)$,其 $t$ 为循环节. 则将 $1$ 式拆开得 $\frac{t\times (B+1 ...
- #3144. 「APIO 2019」奇怪装置
#3144. 「APIO 2019」奇怪装置 题目描述 考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数 \(x\) 和 \(y\). 经过研究,科学家对该装置得出了一个 ...
- [APIO 2010] [LOJ 3144] 奇怪装置 (数学)
[APIO 2010] [LOJ 3144] 奇怪装置 (数学) 题面 略 分析 考虑t1,t2时刻坐标相同的条件 \[\begin{cases} t_1+\lfloor \frac{t_1}{B} ...
- [APIO2019T1]奇怪装置
考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数x和y.经过研究,科学家对该装置得出了一个结论:该装置是一个特殊的时钟,它从过去的某个时间点开始测量经过的时刻数t,但该装 ...
随机推荐
- 【NOIP2017提高组模拟12.10】神炎皇
题目 神炎皇乌利亚很喜欢数对,他想找到神奇的数对. 对于一个整数对(a,b),若满足a+b<=n且a+b是ab的因子,则成为神奇的数对.请问这样的数对共有多少呢? 分析 设\(gcd(a,b)= ...
- Node.js的url模块简介
什么是URL URL是Uniform Location Resource的缩写,翻译为“统一资源定位符”,也就是描述资源位置的固定表示方法.被URL描述的资源可以位于互联网上,也可以位于本地. URL ...
- js能否上传文件夹
文件夹上传:从前端到后端 文件上传是 Web 开发肯定会碰到的问题,而文件夹上传则更加难缠.网上关于文件夹上传的资料多集中在前端,缺少对于后端的关注,然后讲某个后端框架文件上传的文章又不会涉及文件夹. ...
- BZOJ 4897: [Thu Summer Camp2016]成绩单 动态规划
Description 期末考试结束了,班主任L老师要将成绩单分发到每位同学手中.L老师共有n份成绩单,按照编号从1到n的顺序叠 放在桌子上,其中编号为i的成绩单分数为w_i.成绩单是按照批次发放的. ...
- Navicat使用与python操作数据库
一.Navicat使用 1.下载地址: <https://pan.baidu.com/s/1bpo5mqj> 2.测试+链接数据库,新建库 3.新建表,新增字段+类型+约束 4.设计表:外 ...
- java jdk原生的http请求工具类
package com.base; import java.io.IOException; import java.io.InputStream; import java.io.InputStream ...
- wannafly 练习赛11 E 求最值(平面最近点对)
链接:https://www.nowcoder.com/acm/contest/59/E 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536K 64bit ...
- mysql update语句与limit的结合使用
有时候有需要批量更新数据表中从多少行到多少行的某个字段的值 mysql的update语句只支持更新前多少行,不支持从某行到另一行,比如 UPDATE tb_name SET column_name=' ...
- scss 用法 及 es6 用法讲解
scss 用法的准备工作,下载 考拉 编译工具 且目录的名字一定不能出现中文,哪里都不能出现中文,否则就会报错 es6 用法 let 和 const let 声明变量的方式 在 {} 代码块里面才 ...
- tensorflow源码分析——LSTMCell
LSTMCell 是最简单的LSTMCell,源码位于:/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py.LSTMCell 继承了RNN ...