Luogu P5444 [APIO2019]奇怪装置
题目
这种题目看上去就是有循环节的对吧。
在考场上,一个可行的方式是打表。
现在我们手推一下这个循环节。
记函数\(f(t)=(((t+\lfloor\frac tB\rfloor)\%A),(t\%B))\),那么\(f(t_1)=f(t_2)\)的充要条件为:
\]
\]
看到第二个很熟悉的式子,我们不妨设\(t_2=t_1+xB(x>0)\),代入第一个式子得到
\]
后面那坨东西我们把它化简一下,拆开和左边的抵掉就变成了
\]
即
\]
把\(B+1\)移到左边去
\]
也就是说最小循环节为\(xB=\frac{AB}{(A,B+1)}\)。
剩下的做一个简单的区间覆盖即可。
区间覆盖的话左端点升序排序,记录最大右端点即可。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
namespace IO
{
char ibuf[(1<<21)+1],*iS,*iT;
char Get(){return (iS==iT? (iT=(iS=ibuf)+fread(ibuf,1,(1<<21)+1,stdin),(iS==iT? EOF:*iS++)):*iS++);}
ll read(){ll x=0;int c=Get();while(!isdigit(c))c=Get();while(isdigit(c))x=x*10+c-48,c=Get();return x;}
}
using namespace IO;
const int N=1000007;
struct node{ll l,r;}a[N<<1];
int operator<(node a,node b){return a.l<b.l;}
ll max(ll a,ll b){return a>b? a:b;}
int main()
{
int n=read(),m=0,i;ll A=read(),B=read(),M=A/__gcd(A,B+1)*B,l,r,ans=0,mx=0;
for(i=1;i<=n;++i)
{
l=read(),r=read();
if(r-l+1>=M) return !printf("%lld",M);
l%=M,r%=M;
if(l>r) a[++m]=(node){0,r},a[++m]=(node){l,M-1}; else a[++m]=(node){l,r};
}
sort(a+1,a+m+1);
for(i=1;i<=m;++i)
{
if(a[i].l>mx) ans+=a[i].l-mx;
mx=max(mx,a[i].r+1);
}
if(mx<M) ans+=M-mx;
return !printf("%lld",M-ans);
}
Luogu P5444 [APIO2019]奇怪装置的更多相关文章
- P5444 [APIO2019]奇怪装置
传送门 考虑求出最小的循环节 $G$ 使得 $t,t+G$ 得到的数对是一样的 由 $y \equiv t \mod B$ ,得到 $G$ 一定是 $B$ 的倍数,设 $zB=G$,则 $t,t+zB ...
- 洛谷$P5444\ [APIO2019]$奇怪装置 数论
正解:数论 解题报告: 传送门$QwQ$ 我好像当初考的时候这题爆零了,,,部分分都没想到,,,我真的好菜$kk$ 考虑如果在$t_1,t_2$两个时刻有$x_1=x_2,y_1=y_2$是什么情况$ ...
- 【LOJ#3144】[APIO2019]奇怪装置(数论)
[LOJ#3144][APIO2019]奇怪装置(数论) 题面 LOJ 题解 突然发现\(LOJ\)上有\(APIO\)的题啦,赶快来做一做. 这题是窝考场上切了的题嗷.写完暴力之后再推了推就推出正解 ...
- 【LG5444】[APIO2019]奇怪装置
[LG5444][APIO2019]奇怪装置 题面 洛谷 题目大意: 给定\(A,B\),对于\(\forall t\in \mathbb N\),有二元组\((x,y)=((t+\lfloor\fr ...
- 题解-APIO2019奇怪装置
problem loj-3144 题意概要:设函数 \(f(t)\) 的返回值为一个二元组,即 \(f(t)=((t+\lfloor \frac tB\rfloor)\bmod A, t\bmod B ...
- [APIO2019] 奇怪装置
$solution:$ 问题其实就是求两个式子的循环节. 钦定 $t\mod B=0$且 $(t\neq 0)$,其 $t$ 为循环节. 则将 $1$ 式拆开得 $\frac{t\times (B+1 ...
- #3144. 「APIO 2019」奇怪装置
#3144. 「APIO 2019」奇怪装置 题目描述 考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数 \(x\) 和 \(y\). 经过研究,科学家对该装置得出了一个 ...
- [APIO 2010] [LOJ 3144] 奇怪装置 (数学)
[APIO 2010] [LOJ 3144] 奇怪装置 (数学) 题面 略 分析 考虑t1,t2时刻坐标相同的条件 \[\begin{cases} t_1+\lfloor \frac{t_1}{B} ...
- [APIO2019T1]奇怪装置
考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数x和y.经过研究,科学家对该装置得出了一个结论:该装置是一个特殊的时钟,它从过去的某个时间点开始测量经过的时刻数t,但该装 ...
随机推荐
- win2008 ad域控搭建
一.前言 1.1 AD 域服务 什么是目录(directory)呢? 日常生活中使用的电话薄内记录着亲朋好友的姓名.电话与地址等数据,它就是 telephone directory(电话目录):计算机 ...
- Linux基本命令+Makefile
1.linux下查看进程占用cpu的情况(top): 格式 top [-] [d delay] [q] [c] [S] [s] [i] [n] 主要参数 d:指定更新的间隔,以秒计算. q:没有任何延 ...
- postman—随机数和Monitors
postman做重复测试时,随机数就有很大的作用,不用每次都输入 在postman的Params中,输入一个左大括号,会显示三种随机数: 也可以在body中设置 随机数如下: {{$guid}}:添加 ...
- sh_08_打印小星星
sh_08_打印小星星 # 在控制台连续输出五行 *,每一行星号的数量依次递增 # * # ** # *** # **** # ***** # 1. 定义一个计数器变量,从数字1开始,循环会比较方便 ...
- Ajax异步提交的步骤
1.创建XHR对象 ,XMLHttpRequest(该对象负责悄悄滴与服务器进行交互): 2.设置响应函数/回调函数(响应函数规定对返回自服务器的信息如何进行处理): 3.通过xmlhttp.open ...
- Spring Cloud Config教程(五)客户端使用
要在应用程序中使用这些功能,只需将其构建为依赖于spring-cloud-config-client的Spring引导应用程序(例如,查看配置客户端或示例应用程序的测试用例).添加依赖关系的最方便的方 ...
- sql数据库相关语句
易错点 Where需要放在from语句之后:where中不能出现聚合函数(就是能够将几行一列合并为一行一列的函数,比如max,min,avg,count()):但是可以出现其他,如比较符,getdat ...
- JAVA周二学习总结
第一周我感觉我学到了不少东西,其中有上学期C语言学的不好的原因,因为不想再挂科就有认真的在听. 学到的东西有JAVA的基本书写模式自己懂了,还在课堂上弄会了交换数据的方法,还有运算的算法,另外还有数据 ...
- nginx回源使用localhost产生问题
最近测试ngx_http_slice模块,回源的时候填的localhost结果老是超时,还以为是slice模块有问题,后来无意间改成127.0.0.1后就没有问题了 真是见鬼了 #user root; ...
- leetcode-mid-dynamic programming- Longest Increasing Subsequence-NO
不会... 参考: 思路类似于coin那个题,for循环中在满足条件时就及时更新当下位置的信息 def lengthOfLIS(nums): """ :type nums ...