使用二阶微分锐化图像(拉普拉斯算子)基本原理及Python实现
1. 拉普拉斯算子
1.1 简介
一种典型的各向同性的微分算子,可用于检测图像中灰度图片的区域
$$ \nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}} $$
根据上述的差分近似可以推导出
$$ \nabla^{2} f(x, y)=f(x+1, y)+f(x-1, y)+f(x, y+1)+f(x, y-1)-4 f(x, y) $$
1.2 锐化过程
- 使用拉普拉斯过滤器得到图像中灰度突变的区域$\nabla^{2} f(x, y)$
- 使用原图像加上$\nabla^{2} f(x, y)$,如下
$$ g(x, y)=f(x, y)+c\left[\nabla^{2} f(x, y)\right] $$
- 其中c为可变参数
2. 测试
图源自skimage
3. 代码
import numpy as np
3
def laplace_sharpen(input_image, c):
'''
拉普拉斯锐化
:param input_image: 输入图像
:param c: 锐化系数
:return: 输出图像
'''
input_image_cp = np.copy(input_image) # 输入图像的副本 # 拉普拉斯滤波器
laplace_filter = np.array([
[1, 1, 1],
[1, -8, 1],
[1, 1, 1],
]) input_image_cp = np.pad(input_image_cp, (1, 1), mode='constant', constant_values=0) # 填充输入图像 m, n = input_image_cp.shape # 填充后的输入图像的尺寸 output_image = np.copy(input_image_cp) # 输出图像 for i in range(1, m - 1):
for j in range(1, n - 1):
R = np.sum(laplace_filter * input_image_cp[i - 1:i + 2, j - 1:j + 2]) # 拉普拉斯滤波器响应 output_image[i, j] = input_image_cp[i, j] + c * R output_image = output_image[1:m - 1, 1:n - 1] # 裁剪 return output_image
使用二阶微分锐化图像(拉普拉斯算子)基本原理及Python实现的更多相关文章
- 数学之路-python计算实战(20)-机器视觉-拉普拉斯算子卷积滤波
拉普拉斯算子进行二维卷积计算,线性锐化滤波 # -*- coding: utf-8 -*- #线性锐化滤波-拉普拉斯算子进行二维卷积计算 #code:myhaspl@myhaspl.com impor ...
- 机器学习进阶-图像梯度计算-scharr算子与laplacian算子(拉普拉斯) 1.cv2.Scharr(使用scharr算子进行计算) 2.cv2.laplician(使用拉普拉斯算子进行计算)
1. cv2.Scharr(src,ddepth, dx, dy), 使用Scharr算子进行计算 参数说明:src表示输入的图片,ddepth表示图片的深度,通常使用-1, 这里使用cv2.CV_6 ...
- 图像边缘检测——几种图像边缘检测算子的学习及python 实现
本文学习利用python学习边缘检测的滤波器,首先读入的图片代码如下: import cv2 from pylab import * saber = cv2.imread("construc ...
- Laplace(拉普拉斯)算子
[摘要] Laplace算子作为边缘检测之一,和Sobel算子一样也是工程数学中常用的一种积分变换,属于空间锐化滤波操作.拉普拉斯算子(Laplace Operator)是n维欧几里德空间中的一个二阶 ...
- 【OpenCV】边缘检测:Sobel、拉普拉斯算子
推荐博文,博客.写得很好,给个赞. Reference Link : http://blog.csdn.net/xiaowei_cqu/article/details/7829481 一阶导数法:梯度 ...
- paper 109 :图像处理中的拉普拉斯算子
1.基本理论 拉普拉斯算子是最简单的各向同性微分算子,具有旋转不变性.一个二维图像函数 的拉普拉斯变换是各向同性的二阶导数,定义为: 为了更适合于数字图像处理,将该方程表示为离散形式: 另外 ...
- 高斯拉普拉斯算子(Laplace of Gaussian)
高斯拉普拉斯(Laplace of Gaussian) kezunhai@gmail.com http://blog.csdn.net/kezunhai Laplace算子作为一种优秀的边缘检测算子, ...
- PIE SDK微分锐化
1.算法功能简介 微分锐化通过微分使图像的边缘或轮廓突出.清晰.导数算子具有突出灰度变化的作用,对图像运用导数算子,灰度变化较大的点处算得的值较高,因此我们将图像的导数算子运算值作为相应的边界强度,所 ...
- opencv边缘检测-拉普拉斯算子
sobel算子一文说了,索贝尔算子是模拟一阶求导,导数越大的地方说明变换越剧烈,越有可能是边缘. 那如果继续对f'(t)求导呢? 可以发现"边缘处"的二阶导数=0. 我们可以利用这 ...
随机推荐
- pycharm代码无法自动补全
今天写代码时,突然pycharm代码无法自动补全了,经查找后,解决方案如下: 将python 和 spelling 选中即可 后续:当刚打开pycharm时,出现下面的进度条,代码补全功能完好:但是当 ...
- idea maven projects 工具栏按钮的作用
1.Execute Maven Goal 弹出可执行的 Maven 命令的输入框.有些情况下我们需要通过书写某些执行命令来构建项目,就可以通过此按钮 2.Toggle Offline Mode 英文 ...
- USACO2018DEC PLATINUM
就按(博主认为的)难度顺序排吧. Sort It Out 分析 容易发现选出的集合一定是所有逆序对的一个最小覆盖集,那么剩下的就一定是一个LIS.仔细想想还可以发现字典序第\(k\)小的最小覆盖集的补 ...
- Unity3D_(游戏)卡牌04_游戏界面
启动屏界面.主菜单界面.选关界面.游戏界面 卡牌01_启动屏界面 传送门 卡牌02_主菜单界面 传送门 卡牌03_选关界面 传送门 卡牌04_游戏界面 传送门 选关界面效果 (源代码在文 ...
- Java 内部类、成员类、局部类、匿名类等
Java各种称呼类详解 Java有各种各样类,内部类.嵌套类.成员类.局部类(本地类).静态类.匿名类.文件类以及这些组合起来的称呼类,成员内部类,成员匿名类,成员嵌套类,本地匿名类等,真是多的不行, ...
- beta week 1/2 Scrum立会报告+燃尽图 03
本次作业要求参见:edu.cnblogs.com/campus/nenu/2019fall/homework/9913 一.小组情况组长:贺敬文组员:彭思雨 王志文 位军营 徐丽君队名:胜利点 二.S ...
- 使用FFmpeg让mp4转gif
配好环境之后,需要在开始菜单中打开命令提示符,然后进入到test.mp4的文件目录下执行命令.(直接在文件目录下打开cmd不能生效)ffmpeg -i test.mp4 -f gif test.gif
- linux ./configure 的参数详解
转载自http://blog.csdn.net/zjt289198457/article/details/6918656 linux ./configure 的参数详解 ./configure 该 ...
- spark 笔记 14: spark中的delay scheduling实现
延迟调度算法的实现是在TaskSetManager类中的,它通过将task存放在四个不同级别的hash表里,当有可用的资源时,resourceOffer函数的参数之一(maxLocality)就是这些 ...
- 编写个shell脚本将/home/test 目录下大于10K的文件转移到/tmp目录下
#!/bin/sh cd /home/test for i in `ls -l |awk '{if($5>10240) {print $9}}'` do mv $i /tmp done