1. 拉普拉斯算子

1.1 简介

一种典型的各向同性的微分算子,可用于检测图像中灰度图片的区域

$$ \nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}} $$

根据上述的差分近似可以推导出

$$ \nabla^{2} f(x, y)=f(x+1, y)+f(x-1, y)+f(x, y+1)+f(x, y-1)-4 f(x, y) $$

1.2 锐化过程

  1. 使用拉普拉斯过滤器得到图像中灰度突变的区域$\nabla^{2} f(x, y)$
  2. 使用原图像加上$\nabla^{2} f(x, y)$,如下

$$ g(x, y)=f(x, y)+c\left[\nabla^{2} f(x, y)\right] $$

  • 其中c为可变参数

2. 测试

图源自skimage

3. 代码

 import numpy as np

3
def laplace_sharpen(input_image, c):
'''
拉普拉斯锐化
:param input_image: 输入图像
:param c: 锐化系数
:return: 输出图像
'''
input_image_cp = np.copy(input_image) # 输入图像的副本 # 拉普拉斯滤波器
laplace_filter = np.array([
[1, 1, 1],
[1, -8, 1],
[1, 1, 1],
]) input_image_cp = np.pad(input_image_cp, (1, 1), mode='constant', constant_values=0) # 填充输入图像 m, n = input_image_cp.shape # 填充后的输入图像的尺寸 output_image = np.copy(input_image_cp) # 输出图像 for i in range(1, m - 1):
for j in range(1, n - 1):
R = np.sum(laplace_filter * input_image_cp[i - 1:i + 2, j - 1:j + 2]) # 拉普拉斯滤波器响应 output_image[i, j] = input_image_cp[i, j] + c * R output_image = output_image[1:m - 1, 1:n - 1] # 裁剪 return output_image

使用二阶微分锐化图像(拉普拉斯算子)基本原理及Python实现的更多相关文章

  1. 数学之路-python计算实战(20)-机器视觉-拉普拉斯算子卷积滤波

    拉普拉斯算子进行二维卷积计算,线性锐化滤波 # -*- coding: utf-8 -*- #线性锐化滤波-拉普拉斯算子进行二维卷积计算 #code:myhaspl@myhaspl.com impor ...

  2. 机器学习进阶-图像梯度计算-scharr算子与laplacian算子(拉普拉斯) 1.cv2.Scharr(使用scharr算子进行计算) 2.cv2.laplician(使用拉普拉斯算子进行计算)

    1. cv2.Scharr(src,ddepth, dx, dy), 使用Scharr算子进行计算 参数说明:src表示输入的图片,ddepth表示图片的深度,通常使用-1, 这里使用cv2.CV_6 ...

  3. 图像边缘检测——几种图像边缘检测算子的学习及python 实现

    本文学习利用python学习边缘检测的滤波器,首先读入的图片代码如下: import cv2 from pylab import * saber = cv2.imread("construc ...

  4. Laplace(拉普拉斯)算子

    [摘要] Laplace算子作为边缘检测之一,和Sobel算子一样也是工程数学中常用的一种积分变换,属于空间锐化滤波操作.拉普拉斯算子(Laplace Operator)是n维欧几里德空间中的一个二阶 ...

  5. 【OpenCV】边缘检测:Sobel、拉普拉斯算子

    推荐博文,博客.写得很好,给个赞. Reference Link : http://blog.csdn.net/xiaowei_cqu/article/details/7829481 一阶导数法:梯度 ...

  6. paper 109 :图像处理中的拉普拉斯算子

    1.基本理论 拉普拉斯算子是最简单的各向同性微分算子,具有旋转不变性.一个二维图像函数 的拉普拉斯变换是各向同性的二阶导数,定义为:   为了更适合于数字图像处理,将该方程表示为离散形式:    另外 ...

  7. 高斯拉普拉斯算子(Laplace of Gaussian)

    高斯拉普拉斯(Laplace of Gaussian) kezunhai@gmail.com http://blog.csdn.net/kezunhai Laplace算子作为一种优秀的边缘检测算子, ...

  8. PIE SDK微分锐化

    1.算法功能简介 微分锐化通过微分使图像的边缘或轮廓突出.清晰.导数算子具有突出灰度变化的作用,对图像运用导数算子,灰度变化较大的点处算得的值较高,因此我们将图像的导数算子运算值作为相应的边界强度,所 ...

  9. opencv边缘检测-拉普拉斯算子

    sobel算子一文说了,索贝尔算子是模拟一阶求导,导数越大的地方说明变换越剧烈,越有可能是边缘. 那如果继续对f'(t)求导呢? 可以发现"边缘处"的二阶导数=0. 我们可以利用这 ...

随机推荐

  1. qq在线咨询

    <a href="http://wpa.qq.com/msgrd?v=3&uin=2395848377&site=qq&menu=yes"> & ...

  2. ZeroMQ+QT 字符串收发

    结合 Zeromq API函数 与 Qt 字符串QString QByteArray 实现字串收发: 发送端: zmq_msg_t msg; QString strT = “ABC汉字123”: QB ...

  3. httpclient+jsoup实现网页信息抓取

    需求分析:抓取:http://tools.2345.com/rili.htm中的万年历(阳历.阴历等等). 1.首先为抓取的内容创建一个类.实现封装. package com.wan.domain; ...

  4. C++入门经典-例5.17-右值引用的定义

    1:右值引用的定义: 类型 && i=被引用的对象: 左值与右值的区别在于,右值是临时变量,例如,函数的返回值,并且无法被改变. 当右值引用被初始化后,临时变量消失. 代码如下: // ...

  5. 剑指offer:关于复制构造函数

    1:首先参看代码: #include "stdafx.h" #include "iostream" using namespace std; class A { ...

  6. 自定义实现Java动态代理

    转自:https://www.cnblogs.com/rjzheng/p/8750265.html 一 借助JDK的API实现: 1.先创建一个接口,并实现它 public interface Per ...

  7. LeetCode124----二叉树中最大路径和

    给定一个非空二叉树,返回其最大路径和. 本题中,路径被定义为一条从树中任意节点出发,达到任意节点的序列.该路径至少包含一个节点,且不需要经过根节点. 示例 1: 输入: [1,2,3] 1 / \ 2 ...

  8. jenkins 内置变量

    Jenkins 有一些内置的变量可以使用.主要是: 邮件的配置变量,可以在发送邮件的时候使用. 环境变量 1. 邮件的配置变量 ${GIT_BRANCH} - build 的 Git 分支 ${FIL ...

  9. leetcode-easy-design-384 Shuffle an Array

    mycode class Solution(object): def __init__(self, nums): """ :type nums: List[int] &q ...

  10. Dell做RAID配置图文全教程

    首先准备工作:Dell服务器 首先重启Dell,我们会看到Dell服务器的启动页面: 当我们看到出现下面这个界面的时候,根据提示按下Ctrl+R进到SAS磁盘阵列里面 备注:大多数Dell服务器进磁盘 ...