[CSP-S模拟测试]:密码(AC自动机+DP)
题目传送门(内部题19)
输入格式
第一行两个正整数$n,k$,代表秘钥个数和要求。
接下来两个正整数$x$和$y$,意义如题所述。
接下来$n$行,每行一个正整数,意义如题所述。
输出格式
一个正整数,代表密码的种数模$1000000007(10^9+7)$的值。
样例
样例输入:
3 1
2 20
2 4 9
样例输出:
6
数据范围与提示
样例解释:
这$6$个密码为$4,9,12,14,19,20$。
数据范围:
设$s=\max(x$的长度$,y$的长度$),S=\sum$秘钥的长度。
对于$30\%$的数据,$0\leqslant x<y\leqslant 100,000,1\leqslant n\leqslant 10,1\leqslant k\leqslant 5,n\leqslant S\leqslant 20$。
对于另外$20\%$的数据,$1\leqslant n\leqslant 100,1\leqslant y−x\leqslant 100,000,1\leqslant k\leqslant 10,n\leqslant S\leqslant 200$。
对于另外$10\%$的数据,$n=k=1,1\leqslant s\leqslant 500$,秘钥为$666$。
对于另外$10\%$的数据,$n=k=1,1\leqslant s\leqslant 500$,秘钥为$233$。
对于$100\%$的数据,$1\leqslant s\leqslant 500,1\leqslant n\leqslant 100,n\leqslant S\leqslant 200,1\leqslant k\leqslant 10$。
$Warning$:可能存在相同的秘钥,应该算作多次。
题解
看出来了$AC$自动机,看出来了数位$DP$,然后你也看到了祖宗……
考虑如何在$AC$自动机上跑数位$DP$,定义$dp[i][j][k][0/1]$表示到了第$i$个数字,在$AC$自动机上的第$j$个节点,已经匹配了$k$个密钥,是否有限制。
时间复杂度:$\Theta(40\times s\times S\times k)$。
期望得分:$100$分。
实际得分:$100$分。
代码时刻
#include<bits/stdc++.h>
using namespace std;
long long n,K;
long long x[600],y[600],a[600],m[600];
char xx[600],yy[600],aa[600];
long long s[600];
long long trie[600][20],ed[600],nxt[600],que[600],cnt;
long long dp[600][500][20][2];
void insert(long long *a)
{
int p=0;
for(int i=1;i<=a[0];i++)
{
if(!trie[p][a[i]])trie[p][a[i]]=++cnt;
p=trie[p][a[i]];
}
ed[p]++;
}
void build()
{
int head=1,tail=1;
while(head<=tail)
{
for(int i=0;i<10;i++)
{
if(!trie[que[head]][i])continue;
int flag=nxt[que[head]];
while(!trie[flag][i]&&flag)flag=nxt[flag];
que[++tail]=trie[que[head]][i];
if(trie[flag][i]!=trie[que[head]][i])nxt[que[tail]]=trie[flag][i];
ed[que[tail]]+=ed[nxt[que[tail]]];
}
head++;
}
}
long long getans1()
{
memset(dp,0,sizeof(dp));
s[x[0]+1]=1;
for(int i=x[0];i;i--)s[i]=(s[i+1]+m[x[0]-i]*x[i]%1000000007)%1000000007;
dp[0][0][0][1]=1;
int flag1,flag2=0;
for(int i=0;i<=x[0];i++)
{
for(int j=0;j<=cnt;j++)
{
for(int k=0;k<K;k++)
{
if(i==x[0])break;
if(dp[i][j][k][0])
{
for(int l=0;l<=9;l++)
{
flag1=j;
while(!trie[flag1][l]&&flag1)flag1=nxt[flag1];
if(trie[flag1][l])flag1=trie[flag1][l];
dp[i+1][flag1][min(K,k+ed[flag1])][0]=(dp[i+1][flag1][min(K,k+ed[flag1])][0]+dp[i][j][k][0])%1000000007;
}
}
if(dp[i][j][k][1])
{
for(int l=0;l<x[i+1];l++)
{
flag1=j;
while(!trie[flag1][l]&&flag1)flag1=nxt[flag1];
if(trie[flag1][l])flag1=trie[flag1][l];
dp[i+1][flag1][min(K,k+ed[flag1])][0]=(dp[i+1][flag1][min(K,k+ed[flag1])][0]+dp[i][j][k][1])%1000000007;
}
flag1=j;
while(!trie[flag1][x[i+1]]&&flag1)flag1=nxt[flag1];
if(trie[flag1][x[i+1]])flag1=trie[flag1][x[i+1]];
dp[i+1][flag1][min(K,k+ed[flag1])][1]=(dp[i+1][flag1][min(K,k+ed[flag1])][1]+dp[i][j][k][1])%1000000007;
}
}
flag2=(flag2+dp[i][j][K][0]*m[x[0]-i]%1000000007+dp[i][j][K][1]*s[i+1]%1000000007)%1000000007;
}
}
return flag2;
}
long long getans2()
{
memset(dp,0,sizeof(dp));
s[y[0]+1]=1;
for(int i=y[0];i;i--)s[i]=(s[i+1]+m[y[0]-i]*y[i]%1000000007)%1000000007;
dp[0][0][0][1]=1;
int flag1,flag2=0;
for(int i=0;i<=y[0];i++)
{
for(int j=0;j<=cnt;j++)
{
for(int k=0;k<K;k++)
{
if(i==y[0])break;
if(dp[i][j][k][0])
{
for(int l=0;l<=9;l++)
{
flag1=j;
while(!trie[flag1][l]&&flag1)flag1=nxt[flag1];
if(trie[flag1][l])flag1=trie[flag1][l];
dp[i+1][flag1][min(K,k+ed[flag1])][0]=(dp[i+1][flag1][min(K,k+ed[flag1])][0]+dp[i][j][k][0])%1000000007;
}
}
if(dp[i][j][k][1])
{
for(int l=0;l<y[i+1];l++)
{
flag1=j;
while(!trie[flag1][l]&&flag1)flag1=nxt[flag1];
if(trie[flag1][l])flag1=trie[flag1][l];
dp[i+1][flag1][min(K,k+ed[flag1])][0]=(dp[i+1][flag1][min(K,k+ed[flag1])][0]+dp[i][j][k][1])%1000000007;
}
flag1=j;
while(!trie[flag1][y[i+1]]&&flag1)flag1=nxt[flag1];
if(trie[flag1][y[i+1]])flag1=trie[flag1][y[i+1]];
dp[i+1][flag1][min(K,k+ed[flag1])][1]=(dp[i+1][flag1][min(K,k+ed[flag1])][1]+dp[i][j][k][1])%1000000007;
}
}
flag2=(flag2+dp[i][j][K][0]*m[y[0]-i]%1000000007+dp[i][j][K][1]*s[i+1]%1000000007)%1000000007;
}
}
return flag2;
}
int main()
{
scanf("%lld%lld%s%s",&n,&K,xx+1,yy+1);
x[0]=strlen(xx+1);
y[0]=strlen(yy+1);
m[0]=1;
for(int i=1;i<=500;i++)m[i]=m[i-1]*10%1000000007;
for(int i=1;i<=x[0];i++)x[i]=xx[i]-'0';
for(int i=1;i<=y[0];i++)y[i]=yy[i]-'0';
for(int i=1;i<=n;i++)
{
scanf("%s",aa+1);
a[0]=strlen(aa+1);
for(int j=1;j<=a[0];j++)a[j]=aa[j]-'0';
insert(a);
}
build();
printf("%lld",(getans2()-getans1()+1000000007)%1000000007);
return 0;
}
rp++
[CSP-S模拟测试]:密码(AC自动机+DP)的更多相关文章
- BZOJ1559[JSOI2009]密码——AC自动机+DP+搜索
题目描述 输入 输出 样例输入 10 2 hello world 样例输出 2 helloworld worldhello 提示 这题算是一个套路题了,多个串求都包含它们的长为L的串的方案数. 显然是 ...
- [CSP-S模拟测试]:密码(数位DP+库默尔定理)
题目描述 为了揭穿$SERN$的阴谋,$Itaru$黑进了$SERN$的网络系统.然而,想要完全控制$SERN$,还需要知道管理员密码.$Itaru$从截获的信息中发现,$SERN$的管理员密码是两个 ...
- [BZOJ 1559] [JSOI2009] 密码 【AC自动机DP】
题目链接:BZOJ - 1559 题目分析 将给定的串建成AC自动机,然后在AC自动机上状压DP. 转移边就是Father -> Son 或 Now -> Fail. f[i][j][k] ...
- POJ1625 Censored!(AC自动机+DP)
题目问长度m不包含一些不文明单词的字符串有多少个. 依然是水水的AC自动机+DP..做完后发现居然和POJ2778是一道题,回过头来看都水水的... dp[i][j]表示长度i(在自动机转移i步)且后 ...
- HDU2296 Ring(AC自动机+DP)
题目是给几个带有价值的单词.而一个字符串的价值是 各单词在它里面出现次数*单词价值 的和,问长度不超过n的最大价值的字符串是什么? 依然是入门的AC自动机+DP题..不一样的是这题要输出具体方案,加个 ...
- HDU2457 DNA repair(AC自动机+DP)
题目一串DNA最少需要修改几个基因使其不包含一些致病DNA片段. 这道题应该是AC自动机+DP的入门题了,有POJ2778基础不难写出来. dp[i][j]表示原DNA前i位(在AC自动机上转移i步) ...
- hdu 4117 GRE Words AC自动机DP
题目:给出n个串,问最多能够选出多少个串,使得前面串是后面串的子串(按照输入顺序) 分析: 其实这题是这题SPOJ 7758. Growing Strings AC自动机DP的进阶版本,主题思想差不多 ...
- hdu 2457(ac自动机+dp)
题意:容易理解... 分析:这是一道比较简单的ac自动机+dp的题了,直接上代码. 代码实现: #include<stdio.h> #include<string.h> #in ...
- HDU 2425 DNA repair (AC自动机+DP)
DNA repair Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- HDU2296——Ring(AC自动机+DP)
题意:输入N代表字符串长度,输入M代表喜欢的词语的个数,接下来是M个词语,然后是M个词语每个的价值.求字符串的最大价值.每个单词的价值就是单价*出现次数.单词可以重叠.如果不止一个答案,选择字典序最小 ...
随机推荐
- Windows Server2003 关闭 关机信息、开机ctrl+alt+del
取消CTRL+ALT+DEL win+R 或从"开始"打开"运行",输入gpedit.msc打开"组策略编辑器",依次展开"计算机 ...
- Windows下Nginx的启动、停止、重启等命令
Windows下Nginx的启动.停止等命令 在Windows下使用Nginx,我们需要掌握一些基本的操作命令,比如:启动.停止Nginx服务,重新载入Nginx等,下面我就进行一些简单的介绍. 假设 ...
- redis 持久化 哨兵 主从
Redis搭建步骤 环境: 三台机器 centos7 关闭防火墙 selinux Redis版本 3.0.5 依赖环境 yum install gcc-c++ ruby rubygems –y 把版 ...
- CodeChef A String Game(SG)
A String Game Problem code: ASTRGAME Submit All Submissions All submissions for this problem a ...
- python模块 __name=='__main__' 用法
python模块 __name=='__main__' 用法1.ceshi_mod1.pydef test1(): print('111111')def test2(): print('2222')i ...
- 高阶函数map,filter,reduce的用法
1.filter filter函数的主要用途是对数组元素进行过滤,并返回一个符合条件的元素的数组 let nums = [10,20,30,111,222,333] 选出nums中小于100的数: l ...
- 265-Keystone II JESD204B 66AK2L06 评估模块 (现行) XEVMK2LX
Keystone II JESD204B 66AK2L06 评估模块 (现行) XEVMK2LX 一. 板卡概述The XEVMK 2LX is a full-featured evaluation ...
- Zookeeper3.4.14集群搭建
环境: 3台centos7.4 1. 下载release:wget https://mirrors.tuna.tsinghua.edu.cn/apache/zookeeper/zookeeper-3. ...
- Python- 【python无法更新pip】提示python.exe: No module named pip
用Anaconda安装的python 版本无法更新pip导致不能安装第三方库: 用Anaconda Prompt安装第三方库: python -m pip install --upgrade pip ...
- poj2689 Prime Distance(素数区间筛法)
题目链接:http://poj.org/problem?id=2689 题目大意:输入两个数L和U(1<=L<U<=2 147 483 647),要找出两个相邻素数C1和C2(L&l ...