BZOJ 5296: [Cqoi2018]破解D-H协议(BSGS)
解题思路
\(BSGS\)裸题??要求的是\(g^a =A (mod\) \(p)\),设\(m\)为\(\sqrt p\),那么可以设\(a=i*m-j\),式子变成
$$ g^{i*m-j}=A\mod p$$
然后把\(j\)移过去,
$$g{i*m}=A*gj\mod p$$
然后可以预处理枚举\(j\)的值用哈希存下来,每次直接\(O(m)\)询问,总的时间复杂度为\(O(T\sqrt p \log)\)
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#define int long long
using namespace std;
typedef long long LL;
int g,MOD,T,A,B,a,b,m;
map<int,int> mp;
inline int fast_pow(int x,int y){
int ret=1;
for(;y;y>>=1){
if(y&1) ret=1ll*ret*x%MOD;
x=1ll*x*x%MOD;
}
return ret;
}
inline void prework(){
m=ceil(sqrt(MOD));
int base=fast_pow(g,m),now=1;
mp[now]=0;
for(int i=1;i<=m;i++){
now=1ll*now*base%MOD;
mp[now]=i;
}
}
inline int BSGS(int x){
int now=x;
if(mp.count(now)) return mp[now]*m;
for(int i=1;i<=m;i++){
now=1ll*now*g%MOD;
if(mp.count(now)) return mp[now]*m-i;
}
}
signed main(){
scanf("%lld%lld%lld",&g,&MOD,&T);
prework();
while(T--){
scanf("%lld%lld",&A,&B);
a=BSGS(A); b=BSGS(B);
a=(a%(MOD-1)+MOD-1)%(MOD-1);
b=(b%(MOD-1)+MOD-1)%(MOD-1);
printf("%lld\n",fast_pow(g,1ll*a*b%(MOD-1)));
}
return 0;
}
BZOJ 5296: [Cqoi2018]破解D-H协议(BSGS)的更多相关文章
- BZOJ_5296_[Cqoi2018]破解D-H协议_BSGS
BZOJ_5296_[Cqoi2018]破解D-H协议_BSGS Description Diffie-Hellman密钥交换协议是一种简单有效的密钥交换方法.它可以让通讯双方在没有事先约定密钥(密码 ...
- BZOJ5296 CQOI2018 破解D-H协议 【BSGS】
BZOJ5296 CQOI2018Day1T1 破解D-H协议 Description Diffie-Hellman密钥交换协议是一种简单有效的密钥交换方法.它可以让通讯双方在没有事先约定密钥(密码) ...
- loj#2531. 「CQOI2018」破解 D-H 协议(BSGS)
题意 题目链接 Sol 搞个BSGS板子出题人也是很棒棒哦 #include<bits/stdc++.h> #define Pair pair<int, int> #defin ...
- BZOJ5296 [CQOI2018] 破解D-H协议 【数学】【BSGS】
题目分析: 裸题. 代码: #include<bits/stdc++.h> using namespace std; typedef long long ll; ; #define mp ...
- 2018.12.18 bzoj5296: [Cqoi2018]破解D-H协议(bsgs)
传送门 bsgsbsgsbsgs基础题. 考虑到给的是原根,因此没无解的情况. 于是只需要每次把a,ba,ba,b解出来. 然后可以通过预处理节省一部分时间. 代码: #include<bits ...
- [CQOI2018]破解D-H协议
嘟嘟嘟 这不就是个bsgs板儿嘛. 顺便就复习了一下bsgs和哈希表. 头一次觉得我的博客这么好用,一下就懂了:数论学习笔记之高次不定方程 这里再补充几点: 1.关于这一段代码: int S = sq ...
- LG4454 【[CQOI2018]破解D-H协议】
先谈一下BSGS算法(传送门) 但是上面这位的程序实现比较繁琐,看下面这位的. clover_hxy这样说 bsgs算法,又称大小步算法(某大神称拔山盖世算法). 主要用来解决 A^x=B(mod C ...
- P4454 [CQOI2018]破解D-H协议
链接 这题并不难只是需要把题读懂 - By ShadderLeave 一句话题意 给定两个数 \(p\)和\(g\),有\(t\)组询问,每组询问给出\(A\)和\(B\) 其中 A = \(g^a ...
- bzoj 5301: [Cqoi2018]异或序列 (莫队算法)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5301 题面; 5301: [Cqoi2018]异或序列 Time Limit: 10 Sec ...
随机推荐
- day38—JavaScript的运动基础-匀速运动
转行学开发,代码100天——2018-04-23 一.运动基础框架 JavaScript的运动可以广义理解为渐变效果,直接移动效果等,图网页上常见的“分享到”,banner,透明度变化等.其实现的基本 ...
- FCKEditor添加字体
默认情况下,FCKEditor在进行文本编辑时,无法使用中文字体.自个摸索了下:打开 fckconfig.js 文件 找到第154行(应该是),会发现:FCKConfig.FontNames = 'A ...
- 【Unity系统知识】之unity文件操作路径
IOS:Application.dataPath : Application/xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx/xxx ...
- 【Unity练习】 平衡球Demo
链接:http://pan.baidu.com/s/1pKEpnIz 密码:btke
- SQL查询返回去除重复数据的结果集
方法一: select * from tablename where id in (select id from tablename group by id havin ...
- MySQL数据库忘记密码如何重新设置?
前 言当我们忘记了MySQL数据库密码后,该如何重新进行设置? 操作步骤步骤1:cmd打开命名窗口 步骤2:关闭正在运行的MySQL服务(命令:net stop mysql)(如果:此时MySQL正在 ...
- 微信小程序(三)--小程序UI开发
一.UI介绍 所谓的UI(user Interface)开发指的就是小程序应用界面的开发,在小程序开发框架中会为我们提供一系列的基础组件,例如HTML开发中为我们所提供的一些最基础的标签.需要注意的是 ...
- mysql DATETIME和TIMESTAMP类型
以mysql 5.7.20 为例 一直以来,理解有偏差,作此记录,纠正 一.DATETIME和TIMESTAMP 都有高达微秒(6位)的精度 范围 DATETIME 1000-01-01 00: ...
- opencv2——图像上的算术运算4
1.图像算术运算 参数含义: src1:第一张图像 src2:第二张图像 dst:destination,目标图像,需要提前分配空间,可省略 mask:掩膜 scale:缩放比,常量 dtype:数据 ...
- 解决java.net.BindException: Address already in use(Bind failed)端口占用问题
问题描述: 解决办法: sudo lsof -i:20101ps -ef|grep 9905kill -9 9905ps -ef|grep 9905 ------------------------- ...