首先group by 的简单说明:

group by 一般和聚合函数一起使用才有意义,比如 count sum avg等,使用group by的两个要素:
   (1) 出现在select后面的字段 要么是是聚合函数中的,要么就是group by 中的.
   (2) 要筛选结果 可以先使用where 再用group by 或者先用group by 再用having

select count(a),b,c from test group by b,c;

可以看出 group by 两个条件的工作过程:

先对第一个条件b列的值 进行分组,分为 第一组:1-5, 第二组6-8,然后又对已经存在的两个分组用条件二 c列的值进行分组,发现第一组又可以分为两组 1-4,5

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAI4AAABOCAIAAAB5d7nrAAAgAElEQVR4nO29aXBdR5YemMDDRpCSqKVL3d7CbY/HMzHjdlW1VKREiotIrVXqqu7qxTHhDocdjumJ7q4qbaS4AQTATaK2qna1l/b890y0212LKIokgLfefcu8+30rNm4gsT287a7pHwlcPlAAS1CpypKjMk4kEvny5s2b3zvnnjwn8zyAMcYYv/3mD/7xP/yn//L/+ldP7HjyyZ1P/Is/+oMDT+/bvWvHgaf3tNG+A/ufvjc998yzT+zY+dLXv3Fg/9O7n9z19RdePPj0geeeeXaj9vv27N395K7Hvvrbv/973z749IF/+k/+12cOHNy/b89LLzy7e+fjB/bufv7g/l07HvvWN1743/6X33xm/54dv/3lPU/ueP7g/j/69rce+/I/e+qJr337m9944vGvPvv03ucP7v+X/+IP9u7aScqPf+W3vv7cwWef3rtv9xN/9O1vPf6V3zq476mdj33lD3/vm8/s3/PVr/zzP/j27z+1a/dTu3bvfWrPt37nmwefPnCP5zq4b/8Tj39t146df/h7397/1J5dO3bu2rHzxWef2/PkroP79h/ct//rzz3/wjPPPvm1Hbt3PvHcgYNP7dz9/IHn/tHf/80Xn3lhzxNPPfH41w7u2/+7L/3OM/uffmb/vjbaQwq//dUv79zx+J6ndj37zIGXvvHiS9948fHHvnrwwP69e3bv3bObYATIn0OvHv3db/7+8lIDRxiHEcZhs1HF2IvC1iq5UehGoX9vwjhsNesYh2HgYRxiHN64fhXj8B7tCS0tzpNCo76McdhcXsSRH3lNHPk48sm/7bRw60bcIGjVceTPz16vL83H/5LcayzjwPWbNVIg17ZqS/F9ye08tzl3e/Ye44w8F0chjsLZa1f/3fvvxf/iMMC+5zXqXqNOavxmA0eYTONfvPf+SjnCOMJuvYYDHwfuHQpbKwXsx1SvLc7evPr//uf/QOVSuqbomrIGqpGhM88/+4LvBipElqnnskkEBduGCHErBAUEBQTFVZLXzTUVQkVQkSJLnGloosD8p//476EibNQeKtLlSxcc29Q1JZdNq0iSJcGx9XLeotLjjqHKPCMwOcdQeTqrykI2OWppUFNES4N5U8ub2pWLH+RNTeLoyVJeh9L16YnU6KWibRQsPZcaszQocXQ5b02W8jMTJZ7OGkjm6SxNpWWJo6nsRKWQTo2XinbesTRV3micuVRSlQVTRSXHHDh6BIeeY+iaIhZty9ZR0bYUgVVlKW9qIsvIPCfznGPoL//5d0K3ZaqaIvA6VBSB1RRRg8JKDgUNcqTAczmey3FsTlMlWeIKeWPgxBFZYiWRlURmDVSDJ07u27MXRxhBeXKiaBrQMKRk8oKmcaskaJqgqdIqyevmuqbomqwiSZZYy1Q5Nnv61ElZYjdqDxXBsbW8Y0CFt0x1cqKgqTJNpW0dpccu2zoqOSaS+JmJ0sxEiUqPT5ULox9dmCoXFIGFImfrqGDpEkdriqhDCUl8ZvzKzETJVBWezpbzVjlvMdmUIrASR49+dMEx1ErBhiJXKeezmbHJiaKuybalyRKbHL+sa/JG45yZKBUdPTV6SRGZgaOHMfYEJmcbUOJoOjtetI1K0RKYnMRTpqqosqAIrKXBd996E0e+qSJNEVVZgBJrqJKhCqu5YKgcKRQKmm1DReYsS5FEplQyDh962bahrsm6Lt4F1cDzzz2Do0BF0pXLFxDiNI0zTR4hapUYhJg1TLZBrqo8goKiMIauSBI1OHDkHu3LJZumxyWR0TSBplIMk0RQsC1Vg8LVyXJq9JKpKrnUmMDkEgA4hook3tLgVLkgcTRhuKJtKAIr84ytI4mjS46ZAEDmGSabsnUERc5AMpL4om08+vB2JpuSOFoRGU2VZJnm2Kyui8nxSzQ9Xi7ZZOTrjjOTvFx0VNuAlaIxNHAE45bAZpHMXJ0qaZBjqZRjKhoURC4zWXYKtlawNZGlzp891VieRxJfKVo6EkUuo0FulZh2YtlxjktS1JiqsqKYy+fhsWOvWpYEIQshvQaqt8+d3bf7Cb9Zs3RF5DKlPNIQJQnjGsqtEqUhqq13bqNcVWhDFXTEapDTETs8+Iahchu1l4VcVwdAMjMzaafHLzqm1N0JEgAkAHhgW29vF0gAsLUvkQDg4e1bEwAUHX3s8oUEAPdv7enqAAkA+rpBTwIkADBUyTHRlY9++nd//eFS3jBUSWCzqsLbBrx1YzoBAJNLygJtqFLR0SU+e3XKSY19WClqRUe9OuUkAIBSbqNxWrrE0WMil5ksG6eGjjaWZ6cqto7YKx/9eHFuRhEpRcwWbMTRY4YqUJkrIpdTROb7776JcSubusIzKSQz5YJ6ZwLJfK6SbfJ5WzQ1vlJChspZBnf21DEoZ0jLNVCdHTn55f/zf8fY0xFv6UI6+VNdpWyT01WqjWhdpXXE3ptUhbYN0VA5RcwaKjc8eEiDzEaNEwA4poRkis5enr1epjKXkExZumBqIkenCTbksaHEilxOg0LeUg1VUkRGg0ICAEVkFJExNdkxUQKAmckiqSzYmqnJSOYENmvpCoH/7zz6ECkkAJCFjGNKiphVxCyTu1J0YAKAezyUjljHlDh67PiR72HcyCQ/7O0C/b2Ao8dsQ5T49FTFVMRsKY+QTDmmIgv0y9/5vzFuIZlxTEVVaIFN6ohdmcY7ROkqhZSshihZTJk6KwlJSUi++/ZJkR8nbdaqFQPHntn3FI48JNKWxuuQ0mFOhzkdZXSUWSlDSoeUDhkdMqvlu0lTcgaiSdlUGU3JjQy+ZiDaVBlFSJXzisSNa0quYIlQTHcBoCk5JGUUITUzYeRSFyoFWLBEkU1auiRymf5eYOkSkhnbkHPpy5YuOabCUuM3rpazqUt5Cz54f28CgO5OgGSmYKMEAKYmbukBspCThZylS1CiJ8tWAgCOTpYLOkuNV4pGAgAoZkuOrMpZJGWQlLF1DkkZA9FdAEAxXbBETclJ3Hg5ryhCylQZDVG6Sps6i5Ts6ZHDOKrqKq3CXKID6CptaIwkJDVEKVJaQ5SOWInPFmx0/MgrGLd0xJoaL/Fp2xBtkxe4Mdvkc5kLlRJ0LF6RUirMakrWQCtzbqq0pmRHBl+Na/4HQJU3BR1Sqpw1VaZoS49s7zYQTZCjMxenKzoU06Mf/c3i7Wko0TriuzqApUuKSBmqoCPe0qWCjRSR4ujk9ITT1QFGL/1komR2dQCRy1i6tKUH6Ijv7wU64k1NrBSNscs/vX9rl2Mqfd1AR7zEZ7s7gW3IJQdmkx+ocnaypFoaS0YoMKOPbO8u2pKpMqqc1SGVN4V7Q3XfVqAhCsqZYl5GSvbajM2zo0imyLfq2BsvB27V1HiBTZbyiMldIZ2Ui7BUkOncRZEfW3nLfAZQraF2qNYnTaENxJKyqXKaQo8MHjIQ6xiizKcFZtwxRMcQDcQqQqYLACr90bUpRxEyOmQcQ+wCoDcBugDo6gDkVZQA4IFt3QkAtvSs/Ht1qsDRSZYa7+8Fk2VL5DI9CWBqIpKZBABMbqyvG9iGjGSGzo4+8mB/JvmRjnhFpPq6wbYtnSKXMVRhqmww2cslBwrM+PjlH0+WdChmSw7sAkARMmTAjiEKzLjMpx1DJDLc1HgkU6eHj+CwRqQiGVJfN0gAgGQqk/yw6EANMqrCZpIfvf/OGYxbhioUbIRkqr8X9PeCRAcgvKjCnG3yxbxkGexGX3FSsxaqEyee2fcUjnwkspYqrvLN5nC6B1SqTOVNSVPovClx1KjEpcp59KWHtpgqJ3EpmU9fn87LfHq6YlYKqqXxhirYhkzgoTJXHFPJpS9XioYGOY5Ozl6fSABg6VICgKmKnQBAVdhSXuvtAkVHJeLO0iVTE3XEa5AT2DQB0jZknkkVbMTmrtyYKZBRTRQ1nh5ThEzelL700JZyHklciqNG4wGrMrURVNu2AA0yhsrZhpgAoOjAckG1DdlQhaKjnhk5Hvk1WchlU5cSANiGWC6o5KVoaEypoOgqnRz7sQpzm4Dq9PHB5/bsxaGvCayjiqbCmAr1MWJMhbs3GTJrQZ6UbSQYMnt64A1SU7aQzKQLupzXpAlH47NjPQBUbHXC0SzIqwLFZ8d0iZHolCoxUMolANAgs20LsHSBZ8bzlszRY0UH5i05AYClC9nURZYaJROkwZVLDJXrSQAdsRMlXeLTPDNuanwCgP5e8OD93QmwkncB0AOAqXASnUJ8ThWokgk1ke4BgM+OTThaXpMKuiwz6bKFdIXTIEeEKpKZ08PHcNjQEa8qbE8CUJkrtiFPVWzyjsymLiGZ4eg0lNizpwb91rKpyTevVe7f2iWw6bHLPzU1njyLqfGWLihi1tIFTaEtyJoKYyqMjThDpk8PHIprPg7VfhyEmsA5SDYV7mNoreIkC6YsbBYqC/IFXRappI2ECUe7PpEfvfC3j27v10RayI1P5nWFzdhIKJmQTE3Jgb/xpfs4eiwBwM1rJSZ3haPHpipmJvnhREmXhYwiZitFbWn+agIAAqTAJv/B331I4tO9XcBQubwlp8cvEL6cKOlEQMlCRmCTli7YSOgBYLpopi9/0Fi4aSoc+Ro9ur1/9MLfXp/ITziajQSRShZ02YC8rqwPVQKAStHQET966SeExXXEFx1d5pmpcmHw2BvVhdlK0frb//pfiOgmDZjcmKnxGmSI5lkpaoa8CaiG1oPqLlrFaWMyJN5SRFK2oWRI/OkTRy1FlOnshG1M5S1LEXOjlyBLXS3lxVy6D4AJ20AcDVnKhpKDZJVnTCR0AUBlLpHlTib5Yd6SiULc1QGmKiaSKdsQLV1IACByKSKXKkXtpz/6L+SS9PgFQ+VmJm1LF0QupSP2N7503/iVn5QL6q0bFZYaNWT20Qe2CdmUJrDpSx8WdVQy1B4AxFz6aikPWSo3eslSxKm8NWEbIpPVFUFHItH+Tw+fwGFLR6Kq8Fv7EkwuqSNx9vpUAgCyMJB4CoqcpohnR07iyBeY3O2bMz0JwDOZscsXrs+UEgDIQm6ybCGZSY19IPHpe0gjU+Hu5qpn9u7HQYhEzkGKrgimwumQMRVmJVc4U+F0hTNlYW0utOeGxBtQJGUbSprMnz5x1ICipYgKn9ME1tYkB8m2JukiZ6miIfFdAJRNTeayZVPTFU7Iph7o73JMRUcsS40/vL1XFnJQyk2WLSLuJD5taiJ5pStituioZCXH0WPTExadvby1D9iGiGSKrJkKtkIWcA890EO0gN4u0AUAua8qMdfKBTY71gMAEmkHyarE5FXFUsW8qiCRRhxtQF5XBB3xpiYjmTk9fAKHDR2JhKvIgiEBgAaFgo2Kjq6ITNE2eDp77vRJHDTLBTM5elGDQlcH2H5fXwKAgo2gRAtsulzQNcgoYlb75FCdOXny4L695CugSryhSlBgoETrCifxWQPyqsJW8rrIpRxdLtiKrnAaZFaEeFsu0BlLVwwoQZGbKuXZXPr0yROOiQzI64j9eG4iQUcsEunJssFmx7o6QBcAGuRUhdURryo8mQVijyCGDGLi/NLD21JjH+UtqCq8LOSQTJkaH6tkqkITVivlkSJmoZTr7gSGyumItXSBrLITANiaZBsiFChZyFybLEh8et1xGog1kaAptMxloZh9//xprzFXdjRbF8ind+U64qFE5/Pq8PBR112yLEUUc8WirigUx6UNQ7BtGULaNEXDEBhmzNT4vCkhKTdR1LLJDysFdaKoHXn9zwqWbKqcqa6FamTw+DP79/jNmsTRhHmRzCGZMzVxqmLzTMoxFZYaZanRSlHLJD80VK6NhJhmJotQYm0d6VBisilNEX/w7nmJp9pMk2tyS5dMjc9bkMldsQ3Z0oW8BTk6SWwNLJXa0tORAGCy7LBUytRkVeHLBVMWaImnDFXKW6oGBUOVHFOR+LSqsJYuWLqkKrTEZx1TQjIjC5mrU4XRSz9icmOTZUPkMgVbKeW15OhPLV1CMjVRMnXE5tKXiUls3XEikXYMMW8oEpc6eex1HCyz2TEdMiYSTJW7KzdUDkJWFDNHj76CcV2WaQhpCFmEGF0XTVPkuDRNj/J8xnGU6emCJGWZ3BhPj00UDChmK3ldh8yxQ9+TuJQqMaq8VgM8dvi1b379+dBt3JiZdAwVipwGBduAPJOamcxLfFYWcpWiVnRgKY+IeGkjJiYosURSq7KQNzUDySePH7E0qMicojAfz/OOfuXKTw1dKRZ1gacEITszXZYlVkUiz1FTk6UOAKpLcx0AOLYuiawi81ARkuOXBZ42DZTLJk0D8VyOodOVisWxWduGtqVyXLpSdhgmaejK+PiHjq3dvj3DczkIWVGgJYmicsm5uatULinLNM/lVJXXNdk05Y3GmU1dMVRhomQjmXn7zVMYt6jMWNFRkcwhmfl4bluqIGS///55jFsMnUaIY+h0sagbuqIojCyx09MFQ1doetw0YC43aumKqYkFW4MSLfEUlbnywx+8U8prOhJ1xK+Banjg2O+8+NxUuVAp2JoiyjyjiIzAZjXI0dnRStFgcmPlgqqI2WzqItEv20iKiRjfHEMVWWqi6CCJP/7G62+dGTk1MnhqZGDdfHDgyMnBY6dGBs6cHjp86OU3Dr96+tTJ77//9r/513/85rlTiU6AsY8jrysBjh099Oa5U4cPvfKf/+rfv33+7Ouvfe/t82dPDh47e2Z4ZHjgzOmTp0YGX3v1O6+9+l3S28jwiXNnR4aHjh898vp3/vxP3n3nzcGBI6dGBk8OHj1zeujVV/787fNnz54ZOnzolePHDr157tTxY4c2GudfvPf26eETr7/8nYFjh04cObQ0f/P9t988cujlM8ODZ0YGPp6//tr3Thw/PDhw9OpM5a/+01++/95bpObsmeGTg0cHB46eGhk4OXhscODIubMj77/31rlTQ6eGjp88fuTU0PGRwePnz42MDB5Pj1/SoaSjtU6QH7x7/qu/9X/8u/ffOXb4tSOvv3J25OR7b5996+zwO2+NHD38vb94/813z58aOPbKyMnD779zauTk4eHBQ230Rkznz40cP/La2+dOHz306rHDr713/tzhV7/X35PoAGAjuv++LaSwtb+PlLu7QAcAj37poa4E6AAAR97tW9cx9hOdoAOAzo4715KW27b2ksLW/r7uLtDd1bm1vyf+9NcffXi1ceeWvq4OAPp6E6SrB+7fFuf3pgQAW3u7Hrxv29bergQAv/bg/QkAtnR3xsbfu+jB7feTW7TfnTxdT3dHb08XqXzg/v64f0L9PYneRGdPJ0gA8Pd+/ddI5Rqojrz+yovPHoi8Zuwjj/xGdWG2sXwb41Zj+Xbk1/zWAsaN9ajVRp7XrN7lXPcayysO8givm0dBiHHYajQ9t9lqNIkjP/CbGPs93R3L1XniyQ78ZgcA7b5tz63Xlhdqy0vkktAPPLfptdww8HCEo9AnPTdqdYxDshGh1WhiHNaqyxiHzXqj1axvNKq78zDwGs3a4sLtGzfdeg1H2GvUcYRxFH48D/2gtrw0MzUd+G7cw8L87dAP7uqZjOeuHtx6TYeoOj+3UtMO1cDRwy8+ewBHvqVB4qkzVGmy7JTyWnL0AjFvT5R0HbG59EeqQq8lNiYkc5aukB4Kln7xpz8aGTy+Moj1UhhijLHr+r7vLy5WSeX8/Hyr1SDoAgBIoVpdDEOf1DSbdc9rYRy6bnN1lwR2XbdarZEeqtWq6/qkXKvVgiByXRdj3Gq1MMae55GPGo0Wxnh5uV6r1TDGc3Nz648SYxxht9kiualby0vV9k0TGxFS1IW5+Ts1YYQjHPrB3K15HOHQj1qNJo7wwtx8FGCv5Xot3222cIhxhB0rjyPycNEaqM6dGtq3+wkc+Uw2ZWmw5JhI5jg6bagC8SxYuiTxaYlPz0zaIpda68SMPZsc8d0RvBWBvXl1auDo4Sj0N4LK90OMcRRhjLHnBb4fLi0tr37kYhx2dACMw/n522TUQeDF+MVw3r49G6PeaLQIAPG/pLdWyyN3qdUa5I7Nphs3I+V7pQjXl1f2tygSJBMdeOFGILUaLoGK/Ou1fN8NcITdpocjvLxUIz3gCNeq9e33PxhfGAUrBYET4/IaqIYHjh3c9xSOfChypqrE+zSIrMxbkKXGK0WNpUaRTEEptxFUhipBiTWQTDY7QJE7MzxIGLzRaIUhdl2fzE60AXhtKLoxKktLCxiHURTEO40Ib2Eczs3dIlz1i03kC77KK3E5RmX+9kL7v4RYmsMRJiDhCHeAzk6Q6Ors7gCd/X1bO0AnqdnS23//tgeWFqo4wo1ak+BXKU0QXD8pVFCi+7rBjatlic9mUxdv3aikxy8Q+9WmoCLyh6QwxPV6s79/2z1mJggCjMMw9GMBSKC6efN6zE9tH/3i0wZQ1ap1HGEyy4EXEsBCP2o13NCPVKitbCtrerdn5xIdXc16i2DZATpjRDtAZ3VxmbAUwXV5qSYJ8h02xRj/TKhsQ04AkB6/qCpspahRmUs3r5VkIbNprsLY9YII4+pyPcIYgE4AOpst7x6iPohC1/e2P/Tg9NWZCONao15vNshHy/UaKYMOEGHc8txP8OL4uQi3iQEI1XaRUK3WFhaW7kKWzLgKtcX5JSInowA/+MBD7fAQgFsNtwN0kn7aexAEyfOC9pqfAZWpidu2dJYLusCmC7bC0WMaZBxT2ixUzWYzwvjW7XmCU4RxT++We0xN022RAgGjnRarS1093X39W0AH6Ovfkuju+kXjtApV1AbVOuJ7dvY2xth1fdd1CetAGRFVgojBDgA6QGcHAJ0g8chDD2/rv4/U/NrDj7iuT1SbRqMxN7eAMdY0IwzXCIyfAZXEZ4kbRlVYgU1OVUw6e1lV6E1C5WMchjggU990W37ogQ6wtLwYYRzh8GP5HcC6erpJudFqEthuz8/19a/AvLRcDaJwYWmjfj6zHGMcReQ7HkII4zLGGKwmUuO6Lnk3h4GXy2RJubq0gCPc29Plux5ZKnR2gNuzt8inHavXhiGR7RjjkOO4VdkefiKoiPFYYNOlvEYcYhMl/R4a4EZQNZv1WmM5wiHoABEOIxx2JFYKGxC+ev0agXbm2tUI456+3p6+3ljuBVEYRO243qOrz4DalRoI5bgMACDqT/zunJ29Ea5u8KapLMahu6qpdgCAceh7LYzDX3vkIc9tNhs1jMOt/X2Li/MYh8vLS0TFDUOfYaj4Jf2JoLJ06aEH+jg6aWoikimeGVfE7Jr9bJ8Mqgj7AfZBJwiwH2C/4dfj8noUBhjX3dbCchV0JQKMO7q75qtLAcadPd23FxfmlhZ7+re0Aj/A+NrszQDjAIcb9/bzUoR9jP0Ie2TdDZEYlwl193QkugDoAJ7fIC2bjSrGfrFgNRvVKHQx9q9fm4ptE8QKE9syOjtA3GGjWXW9ehi5qia33eITQEWUdbITiGx4y1syz4x/CqjmqrcjHIJOADrAlvv7unoSbtSKcBhg/2N5GK4uMMgzeVEYYdz0PdAB4voI4+VmI8K42qhv0M9nk98DqpZb60yA6vI8xv7Wbb0Y+7O3rpGPqktzBKp4xonZpV5bxNjf/sDWVnMZR3cgX6rOYRyGkRtFAca+KPKNZhXj8G6ojr/x+ksvPIv9lmOoqixAkVMVXhHXwHDX3t2NoJJ4yjFUTRGhyFUK9nf/9E8w9n3fjXAYhkSY4PnFuZ6engiHURSFOPhYHkVRFGEchiHoABjjCOP5+fm7agAAEcZLS0sRxhv089nkURQQ4wgRTaoK71qMNxo133d7e7sxDhdXj7REUSDLYhQFRFrGctLzWmQR0mjU2ttjHJKHxhiHoa+qqu+767yr3jw9TKwVudQYkngDyRoULF3ZLFQslZqq5JlsSmBySOILlv6Dd89j7HutlXUVMd5s37697VW8ToqiaHFxEWPcbDaJHaher2OMgyDo7+9fWlqq1+sPPvjg0tISxrharW7Uz2eV4tdPFAWahtpfXQCAhx9+kDxOf39fGPqxGQVCOYaBQLu8vHJeqK+vJ8Z+eXnJdV3P84LgjnZuGBtogKeHBnY+9hXiBS45pmOoZNfxZqHSoCByOShy87PXJY6+cvGDt8+dri0v4AiTqSep0SB6DmGfdRL5lCycb9++7fsrQoAUYowBAKTNRv18VolMdBQFvu8ipIShT7gkCDzfdxcW5mLuifWCKAoURQpDn8Ac8yXGYa1W7e5ONJv1a9dm2hWHKIqCIPB9v9VqKYoSP/UaqIZOHCVcRVzAUORkgbZ0pd1tuNaduL5rcbLsCGxWlQU2l1YE9tpU5d23zvpeI7Y5tlot8mVZWFi4ayjtiTCK67qzs7Nx5fLyMiYyEIBms0mg8n2flH/BaYWlwtDXdZWA0aahhRiHCwtzMdMQ2EjLdgjxqok5ioKY+RYW5qIoCsOwnY0cx7lrBHfUit996cUbM5MTRcfWkWOotgElnmp3G651J67vWoQSaxvQ1pEisNenJ3g6+2d/8m8x9n3XwxgHQXDr1i28ylV3MXh7iqLoLiAJq/m+T9gIANDR0fGZgPDJ0ooQC0PfMLT43UOMk3iNjT9sNGoEGNPUY5B83yVIt6M7N3erVqsSE0G79AvDUJZlIvPjFB/aOb13187vv/PW0Imj3/3TPxk4evits8ODxw8PDbTT6xvQnTanho4PHj985PVX3j53+vgbrx965bvvnT8XBi0c4fjGBKd6vU44bN2E295Ai4uLQRDET0LkA3me5eVlIjQ26uezSoSNPK8VRYFlGVEUxNjEaGEcXr06TbAhn1qWEYs+z2sRpIkAxDgk5uZVbruTgiDwPM8wjLu+LGv2VpADtiuEvWZtYa3bcF2/4hrXottYwti741GM/KBVF3jasWye5wVBUFWV53mKoq5du6brurZB4jgOQug4TjKZLBQK+XxeFMVUKkVRlKqquq5ns1me53Vddxxno04+w2SauqpCCGXLMhklZGIAABBHSURBVH784781TV1RJMPQRJEXBE4QuFKpAKE8NTVhWQbDUIoiFQrOj37030xTR0ixLAMhRVVhLpcpFBxFkf76r///q1enZVnM5TKqCjVNgxAKgsDzPISwUChQFBWtNV/deVc9f3B/6DaKtgFFjqezApu1DbhZtUJHogYFVRZyqbFKwaYzydNDAxj7jdodXiZMQ5S3e36RVxiRGMdIilmTiEGiqjQajV8CVxENAuOwXC4SidfulIkZhVQSrioW8zHfxCwVa+3xuyoM/XbphzH2PE/TtPW5aujE0RefPdBcXqwUbImjOSpjGxDJHNmARzbmW7ogC5lyQd28v8rHEZ6fn4/HcVfhi5DWNyy5bpNMPVkkEYqVQ9s227UMUh9fW60uxiutuxgoCAJN09bnquGBY3ue3IH9FnHg3ro+AyWWHKmYqtjTE05PApgab2o8R4/lLflTQEVuXKvVCEPU6/V2dvncp/WhivU6jMN6fdl1m+TNRBjINPVGo0Zc2LFVt6+vBwDQ3Z3o7+8DAJAl8CagGjh6+PmD+3HoMdmUDiVVFtLjl7bf16dBjspc4ejklh6QHr8wVTFZatQ2xE8BFcY41qrvsfj9vKYNoarXlxcW5ghmRMUIAi+KgtnZG2Sx3E6tViNGNzb1hqG/CahOHj/y9J5dkdck1iBFYCtFi6PTEyWTnFLa0gM0yCCZIocsNguV73pRFJGFEflykbXeL22mf+60PlQxhaHfLgMJYKLIR1HQbNYbjVq8dYcAFruwCc9tAqoffv/dx778z3DglhyThPRwTGRqcib5kaVLf+fR7Rc/+JvpCUtVaJ4Z/xT+qsBbQSVeFeH/Kd5Vvu/OzEy1I0S2FBCxVizmCTxx+3p9GbdtNYi9HpuA6vzZUwf27sahZ+uImAGZXNIx0dzsdAKAbOrS1akCk7tiqByUcgVb+XQCkKyQMMZbt26NfuY+mM9X2pCrvvSlRwAAvb3dsakiZq9kcoyogrFlNgi8/lXv1PT0JGnWbNY3AdVr3/vzl154NvKajqEWLN1UlatTJZ7JEM1ismyZmqgjdqpiilxKEbObhcprueTGBCoAwL023X0e04auRTLXy8tLDz/8IMbhwsJcrKwTcy3ZUzU5WcE43Latf1Xi3dEhN8dVb54ePrjvKb9ZK1i6wOR4OluwtQQAEp+dnnAENi2waVnIFGyFRHD4FFxFFijt9laytPqCpA25qtGodXcnenu7AQBE+hFloVpdjK2FRN0guJIVGEGI5J2dYBNQnR4a+PpzB4NWncQ00hSRpVL3b+2J91L3dgFFzJJzrB8LGcLHpCq8pSt5U+PprA4lTRFPHDlEoCKr12az6ft+T08PblMIvwhpRXdotRqEVwhazWa9v7+PFAAAsXZH0OI4Bq9aZh96aDuxJMWGqHp9uW2vI8YYh2EYW9YRQhuuq/bu2kl21xI/iKrwJHSQYyq2IY9e+sns9bLEp0UudY+9FeTMHp1JmqpC4lO9+9ZZjMnecXz79u2VuwKAV4XhFyTd0fTaVfDt2++PXzkAALKcun79KgGvUHBiYGJVYmFhrtVqxKaKGzeuPfLIQ8SM2X4/27bvGsEdL/CLzx7AgWtpsJy3RJaSeKpgazyTIhsrCjYS2CSUcqU8IifaN3ItygINRe7W9RmZZ9hc+szw4NLibQLVyi0B6O7u7urqwvhehqXPVbrLCxz7q3zf3bKlN17ebtnS264Nxq7FKAoajVrcZuvWLQCAzs4VbyQAIAzDdpN0GIYQwrukzgpUp06eeGb/nkZ1gUQHM1VlZrLI5JITJZNItkrRENgkMVjcY2+FLNCOiTRFNJBMpcdLjvn9d97C2HebrXq9TozlxN0Z25m+IOkOAMQJcpcXKlYoCNNgHHpeiwjA2C/s+27sBGn3TOI212Is9HRdD9f1Ap87NfTk134bRz6S+PHLF6crxfT4JZHLCWwaSrShClCiiaZ+7yVw3lJNTVZlgVg9pivFV77zp81GlSjrvu+TVTAZ0Pz8/P9QVtlU8okL2PddCGXXbRKNgMBw48a1WO0mKycCpCjy8WspBml5eSmWfgTapaUFvOoCjqEyDGNDa8XvvPjc0tysxNEFS58oOrn06O2bMyTqlmMq5NQieVGRQCjrHtpRRIZnMpYGVVko2obMM0StuDZzFa+62/G9j8d8TtOK9MOrXqh2fsJtZnKiOBC7O8+zBMVqdTFu0O78betk7c3CEEJ4l4ngzlG4vbt2/uUP3nvrzMj5s6e+92f/z7E3Xh0aOHLu9MDIySPDg28ce+Pl8+cGTw29MTx4aODYK2dGjrbR8TYaGDl57NypoeGBY2eGB0cGj587NbS4cCteAuNV12K1Wo291J//RERWu2vDdZtkoj2vRYTYrVs38ao9guDBsnRcg1f3wMQ+yXgj1K1bN8M2WRcEQavV2tAJ8u5bZ5/esyt0Gzjya4tzxLUY+Q0cNgK3StyGXnMeh7UVd2JUb6PmHQqaGHs4XPEuBq166DYmKgVZlHieV1XVMAyKojRNkyRJ13X4BUmahmRZlGUxn7cvXryQz9uiyIsin04nb9y4lsmkJEnI521JEhBSFEXieVaSBEHgHMfiOIbjGFHkTVOXZVFVIfFS2rbJsnQ+byuKhBBSSa0sQwgdx6Eoan2oSDAEHPmaIiKJhyJXKVqKyJDzigKbLjqqIpLIlB+U8ujT2QCJo50w1l0bBz73aeX1E4Y+URbu0izaBSDhlWp1cXp6kqyl4pVv+9o55rZWq7GJJfBbZ0a+9tV/jiP/6mQZihxHZcjeowQAD2/f0t0JRC5DQhyV8ujTuRYxxq1W6wtlobiTYq8g2VtB9lnEk07waLUazWad2PcIDDSdI+Ku1WrECyyiKMa6BhGbm/dXRT6dSTLZVKO6kEle7u/tJGEpSYw0DTLXZwqKmBXY5KdzgsR3JWoF0Qa/IGllcoPAI8o6btt/GbMU4TACz9Wr05VKafVQZXjffVvJQmrbtn6ywCJ23tUDmZtxgjzx+Fdx4JJg5FcuflB0dNuAtiFDiYYS/cC27omSfvGDvzZUbqKkbxaq0F9Zjbuu29fXBwDo6+v7pU3zz58ajVosu0ZHLxPmuO++rbENIpZmxHw+O3sD41CShFh1jJkpdkKSjdOrsvQTQ3X8jde//txBHHoiS1katHWUt1Q6O64jnoSQVERKFjISny4XVHIgblNQtRp3/L+xDvoF8gUTL8bCwlwY+pOTlbm5W4TD4j3rH1fZG42aqsK7VlGxxg8AcN1mrVatVhd9390EVIde+e63vvECDlyOyhRtw0CyY6KJkj1RMnPpyzOT+d4ugGSq6EDHlDZ/wNTHES4UCvFdY3fwL36SP6sU+r5L3kkUlY2B6e/vixWHmzevE95aWlrwfbdaXSRbNmMsXbdJtr4kEh3t4EVRsAmoRgaPP39wf+Q1iVWJzaUlnhK5nKmJikiRA3GmxstChsTi+3RqBca4Vqs1m82HH36Y+Ox/KbP8maQ7rKMo0tLSgue16vXl2PrXPvvxPjKyrorFI1mZ/cZvPEpYjZg8Nr0N5p03z+za8Zhbr+ZNzVQVKLGTZUdVeEWkdMSTMLKGypEAnvc8Yb/ycwoaFHQkQok9MzKAI39xfgFjXK/XyfrXdd0oin65O5l//hRGUbSwMKcoCl49SLp161ZiFsKrtvNqtbpqfQglSXLdJmk5OzuLcdjV1bWwQCw1YZw3m81NQHXs0KsH9uzCkc/l0jJHTRZtic11AWCposikDcR2AYCknKXxUMxOV8x7RBq2NUnhc5Yqlh2Np5KnTx7FeCX+AgmqgVdjCCQ6utbuJfkcU4S9lkvOykMZRUGIIxz6AYlp4DY93/X6+7bitrgVXsu1TYcc2A48PwpwBwCknjw+jjCJBhN3giMceCHpQYVa6EftVqcVqP7qL//iG88dxF6z7JiazAt0ZqpkCXSqC4D+bnB/f4etC+U84ukxHTLJKz/RFHpdIjGWFSGjCBlL43XIDJ14DYcNjFcCAmASViXEeG3shi8GhZhAFf/b291HQk6QxyERY1qNlRP2Y1fG44gu7S1Jmzi8DIkGsxJbJlxpEMe8iN8dK1C9/vJ3DuzdXVucKzmmpStQYtPjl6YnCnkLSnz24gd/M1m2oJSjMpfq1Zumxq8N3XiHdMSSk8ISn1YVerJsDBx7BeNWbXmpWW+snCaPMI7wzes3Hnxg+y/4tPVnRjEb4QhzDIsjHAVh6AcdAJCP3Garp6t7FcKI5LqqLS0s4ggHnh+zFF4Nj0ComC90go64c5LjCIu8sNLVXTGWhk4c/cPf+yY5X6Uj8ea1SY5O60iUhZxtyLduTI5e+okGmcmyMXrpR+RXPDYiU+PJMplnxkt5dPi1P8VRE2M/CsnZxbADgL7e7g4ASHwxwnCf8zzwfIxXIqxxDBuXe7q640B0OMLL1cX6co1cVVteKhdLGIdus+W2GlEQxi37enrj8j/6h7+58vXFK7HVSFnkhTtjaIdqZPD4U098DYeezDMclZF5RuKpUt4gUTNJJFko0RrkZCGTt+T2IKjtZOkScUWStbNtyCMnj2DcIgH98MqPzYWkjCPvTvnznQe+S/IodCWRx9j3vVZ7m3ptEeMwCl2Mw0Z9CeNwfu5mqZj3vUZcH7cMfJc8exi0fK8Vzwm5C8ah7zUQlMOgtXpVG1RvnRnZteMxHPlT5YKtIyTxOhJlgc5bqsRT16aLApuennCY3NjVKYejx9aeZrxDOuJFLqMqLIFKFnL/8S/fa9YWMPYw9t1WzXPr8Vlzt1Vb/V3AzzuFQQtj3/cabqtWLFhk8Bj7jfoSKftew/caJCAoxj4JgICgSMIYtprLnltvNqqeW49P1ZNghiTsIY48HHmkh8Bvem69Us57bp3cfQ1Up08NP7X7SdPQRIETBcY0kK4pHJvTNZnKJTk2S37PT1X5y5d/ks+rbT8Pt4YMXZEl1jKRoZOfhxOvXL4wPVUyDYigoGuyZaL/9jf/39RkUVMlSWR0Tf5CkKErKhItEyEocGzWMpEic4au2JbK0GnbUh1bQ1DIZcdJy1LRQlAgbcicKDI3M10mv4NIfq7P0JVS0dI1maHT5CpNlYoFUxRo04A8l1ORSO6+BqoTx48ePLAfrWzb8DH2lxZvY+z7Xh1jD0cuxl6jMU8cV43GPMbe+hS5YdDE2Fu5EHvktzVbzSrGXm155cKF+ZvxR18Iwtgjj0CmAmPPc2uk3vfq5GE9t0Y+ajaWWs0qaRkGzcBvkPrq0u2VTrCHsRf4jfgSHLmeWyOXLFfn2qcuCltroHr7rfM7v7ZDFDiMQ0NXNRVaptr2I5jCx0jcJH28h1/RJ6U1UL1x6PD+vfuKBae2vKRriGNpy9Qlkf1ZUK3/e5/r5b9C6zOC6syZMy+99NKFCxd++MMfDg8PHzr02tmzp48dOzI0fKKNjq/SiaGhwaGhwaGhoU+YDw+d+BV9aloD1fDw8M6dO//4j/94x44dO3fuPHDgwPPPP7t//959+3e30a5V2r1v3559m0h79u/bs3/f7l/Rp6M1UP0qff7Tr6D6wqRfQfWFSf8dZAG2osfmSZYAAAAASUVORK5CYII=" alt="" />

 SELECT
ConsumerId,
Topic,
COUNT(ConsumerId)
FROM
ali_ons_consumer
WHERE
STATUS != "Deleted"
GROUP BY
ConsumerId,
Topic
ORDER BY
ConsumerId DESC,
Topic DESC;

SQL GROUP BY两个列的更多相关文章

  1. SQL ORDER BY 两个列

    ORDER BY  后可加2个字段,用英文逗号隔开. f1用升序, f2降序,sql该这样写 ORDER BY  f1, f2  DESC 也可以这样写,更清楚: ORDER BY  f1 ASC, ...

  2. SQL练习之两个列值的交换

    SELECT * FROM dbo.test2

  3. 解读SQL Server 2014可更新列存储索引——存储机制

    概述 SQL Server 2014被号称是微软数据库的一个革命性版本,其性能的提升的幅度是有史以来之最. 可更新的列存储索引作为SQL Server 2014的一个关键功能之一,在提升数据库的查询性 ...

  4. 关于group by 两个或以上条件的分析

    关于group by 两个或以上条件的分析     原文地址:http://uule.iteye.com/blog/1569262 博客分类: 数据库   首先group by 的简单说明: grou ...

  5. SQL GROUP BY 语句

    合计函数 (比如 SUM) 常常需要添加 GROUP BY 语句. GROUP BY 语句 GROUP BY 语句用于结合合计函数,根据一个或多个列对结果集进行分组. SQL GROUP BY 语法 ...

  6. 数据库关于group by 两个或以上条件的分析

    首先group by 的简单说明:    group by 一般和聚合函数一起使用才有意义,比如 count sum avg等,使用group by的两个要素:    (1) 出现在select后面的 ...

  7. LINQ TO SQL ——Group by

    原文:LINQ TO SQL --Group by 分组在SQL中应用的十分普遍,在查询,统计时都有可能会用到它.LINQ TO SQL中同样具备group的功能,这篇我来讲下LINQ TO SQL中 ...

  8. hive:(group by, having;order by)的使用;group by+多个字段,以及wiki说的group by两种使用限制验证

    hive> select * from app_data_stats_historical where os='1' group by dt limit 100; 出现结果如下: 2014-01 ...

  9. group by 两个或以上条件的分析

    首先group by 的简单说明: group by 一般和聚合函数一起使用才有意义,比如 count sum avg等,使用group by的两个要素:   (1) 出现在select后面的字段 要 ...

随机推荐

  1. 红帽学习笔记[RHCSA] 第八课[Nice值、时间同步、RPM与Yum软件安装]

    第八课 nice值 什么是nice值 给进程设置的优先级就是nice.nice的范围是-20~20.nice值越小占用的系统资源就越多,就是这个进程不nice. 如何查看nice值 # 使用top命令 ...

  2. JDK安装中配置Path无效解决办法

    1. 问题 在安装jdk后,配置完环境变量,然后在控制台输入java -version出现与安装版本不一致的版本,如安装1.8后version仍显示1.7,即:修改环境变量没有生效且原先存在安装过的J ...

  3. 2016青岛区域赛.Coding Contest(费用流 + 概率计算转换为加法计算)

    Coding Contest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  4. 《剑指offer》面试题22 栈的压入、弹出序列 Java版

    (输入两个整数序列,第一个序列是一串数字的压入顺序,判断第二个序列是否是该栈数字的弹出顺序.) 我的方法:压入序列是给定的,每一次弹出操作形成一个弹出序列的值,我们从前往后遍历弹出序列,每一次访问弹出 ...

  5. HNCPC2019H 有向图

    题目 设\(f_i\)表示经过\(i\)的期望次数.那么显然答案\(ans_j=\sum\limits_{i=1}^nf_iP_{i,j}\). 我们可以轻松地列出转移式子: \[ f_1=\sum\ ...

  6. [BZOJ3451]Normal(点分治+FFT)

    [BZOJ3451]Normal(点分治+FFT) 题面 给你一棵 n个点的树,对这棵树进行随机点分治,每次随机一个点作为分治中心.定义消耗时间为每层分治的子树大小之和,求消耗时间的期望. 分析 根据 ...

  7. js获取url中的参数(解决中文乱码)

    这个是封装好的方法: function getQueryString(name) { var reg = new RegExp("(^|&)" + name + " ...

  8. Yii2.0 limit(1)与one()

    ActiveRecord中的limit(1)与one()的区别 (new \yii\db\Query())->from('user')->limit(1)->one() public ...

  9. W3C标准下的盒模型与IE盒模型

    标准盒模型如下图所示: IE下盒模型如下图所示:

  10. gulp程序怎么跑起来 及 使用中遇到的常见错误

    gulp常见问题 问题一:Error: cannot find module 'gulp-concat' #16 解答:需要先npm install,然后执行gulp gulp安装及使用 一.安装no ...