BZOJ 3329: Xorequ(数位dp+递推)
解题思路
可以把原式移项得\(x\)^\(2x\)=\(3x\),而\(x+2x=3x\),说明\(x\)二进制下不能有两个连续的\(1\)。那么第一问就是一个简单的数位\(dp\),第二问考虑递推按位做,设\(f(i)\)表示最后一位为\(0\)的答案,\(g(i)\)表示最后一位为\(1\)的答案,那么\(f(i)=g(i-1)+f(i-1)\),\(g(i)=f(i-1)\),整理一下发现\(f(i)=f(i-1)+f(i-2)\),就是斐波那契的形式,直接矩乘即可。
代码
#include<bits/stdc++.h>
using namespace std;
const int N=70;
const int MOD=1e9+7;
typedef long long LL;
int a[N],len;
LL f[N][2][2],n;
bool vis[N][2][2];
LL DFS(int x,int lst,int lim){
if(vis[x][lst][lim]) return f[x][lst][lim];
vis[x][lst][lim]=1;
if(!x) return f[x][lst][lim]=1;
if(!lst && (lim || a[x])) f[x][lst][lim]=DFS(x-1,1,lim);
f[x][lst][lim]+=DFS(x-1,0,lim|(a[x]==1));
return f[x][lst][lim];
}
struct Matrix{
int a[3][3];
void clear(){
memset(a,0,sizeof(a));
}
void init(){
a[1][1]=a[2][2]=1;
}
friend Matrix operator*(const Matrix A,const Matrix B){
Matrix ret; ret.clear();
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
(ret.a[i][j]+=1ll*A.a[i][k]*B.a[k][j]%MOD)%=MOD;
return ret;
}
}mat,ans;
Matrix fast_pow(Matrix x,LL y){
Matrix ret; ret.clear(); ret.init();
for(;y;y>>=1){
if(y&1) ret=ret*x;
x=x*x;
}
return ret;
}
int main(){
int T; scanf("%d",&T);
while(T--){
memset(vis,false,sizeof(vis));
memset(f,0,sizeof(f));
scanf("%lld",&n); LL nn=n;
len=0;
while(n) a[++len]=(n&1),n>>=1;
printf("%lld\n",DFS(len,0,0)-1);
// cerr<<"!!!"<<endl;
if(nn==1) puts("2");
else if(nn==2) puts("3");
else {
// cerr<<"!!!"<<endl;
ans.clear(); mat.clear();
ans.a[1][1]=2; ans.a[1][2]=3;
mat.a[1][2]=mat.a[2][2]=mat.a[2][1]=1;
ans=ans*fast_pow(mat,nn-2);
printf("%d\n",ans.a[1][2]);
}
}
return 0;
}
BZOJ 3329: Xorequ(数位dp+递推)的更多相关文章
- BZOJ 3329 Xorequ (数位DP、矩阵乘法)
手动博客搬家: 本文发表于20181105 23:18:54, 原地址https://blog.csdn.net/suncongbo/article/details/83758728 题目链接 htt ...
- BZOJ 3329: Xorequ [数位DP 矩阵乘法]
3329: Xorequ 题意:\(\le n \le 10^18\)和\(\le 2^n\)中满足\(x\oplus 3x = 2x\)的解的个数,第二问模1e9+7 \(x\oplus 2x = ...
- BZOJ 3329 - Xorequ - 数位DP, 矩乘
Solution 发现 $x \ xor \ 2x = 3x$ 仅当 $x$ 的二进制中没有相邻的 $1$ 对于第一个问题就可以进行数位DP 了. 但是对于第二个问题, 我们只能通过递推 打表 来算 ...
- BZOJ3329 Xorequ[数位DP+递推矩阵快速幂]
数 位 D P 开 long long 首先第一问是转化. 于是就可以二进制下DP了. 第二问是递推,假设最后$n-1$个01位的填法设为$f[i-1]$(方案包括 ...
- BZOJ.3329.Xorequ(数位DP)
题目链接 x^3x=2x -> x^2x=3x 因为a^b+((a&b)<<1)=a+b,x^2x=x+2x,所以x和2x的二进制表示中不存在相邻的1. (或者,因为x+2x ...
- hdu2089(数位DP 递推形式)
不要62 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- BZOJ 3329 Xorequ 数字DP+矩阵乘法
标题效果:特定n,乞讨[1,n]内[1,2^n]差多少x满足x^3x=2x x^3x=2x相当于x^2x = 3x 和3x=x+2x 和2x=x<<1 因此x满足条件IFFx&(x ...
- bzoj 3329: Xorequ【数位dp+矩阵乘法】
注意第一问不取模!!! 因为a+b=a|b+a&b,a^b=a|b-a&b,所以a+b=a^b+2(a&b) x^3x==2x可根据异或的性质以转成x^2x==3x,根据上面的 ...
- hdu 2604 Queuing(dp递推)
昨晚搞的第二道矩阵快速幂,一开始我还想直接套个矩阵上去(原谅哥模板题做多了),后来看清楚题意后觉得有点像之前做的数位dp的水题,于是就用数位dp的方法去分析,推了好一会总算推出它的递推关系式了(还是菜 ...
随机推荐
- 关于SQL连接语句中的Integrated Security=SSPI/ture/false
解决方法:即:Security Support Provider Interface设置Integrated Security为 True 的时候,连接语句前面的 UserID, PW 是不起作用的, ...
- [19/05/29-星期三] JavaScript_ 函数的简介
一.函数的简介 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <t ...
- org.apache.ibatis.exceptions.PersistenceException: ### Error querying database. Cause: java.sql.SQLException: The server time zone value 'Öйú±ê׼ʱ¼ä' is unrecognized or represents mor
今天在用junit测试mybits程序是遇到一个问题,报错为: org.apache.ibatis.exceptions.PersistenceException: ### Error queryin ...
- QButtonGroup
单选按钮和多选按钮,存放进QButtonGroup中 QButtonGroup方法来实现分组:将相同功能的按键,设为一个分组,然后可以进行 单选 或 多选 或 互斥单选 QAbstractButton ...
- 对C++拷贝构造函数的一点理解
一. 什么是拷贝构造函数 先看一个简单的例子: #include <iostream> using namespace std; class CExample { private: int ...
- Python中对 文件 的各种骚操作
Python中对 文件 的各种骚操作 python中对文件.文件夹(文件操作函数)的操作需要涉及到os模块和shutil模块. 得到当前工作目录,即当前Python脚本工作的目录路径: os.getc ...
- 剑指offer-用两个栈实现队列-栈和队列-python
题目描述 用两个栈来实现一个队列,完成队列的Push和Pop操作. 队列中的元素为int类型. # -*- coding:utf-8 -*- class Solution: def __init_ ...
- Spring的底层实现机制
Spring的底层实现机制是通过Demo4j+java反射机制实现的. 使用demo4j来解析xml,使用反射机制实例化bean.
- vue手动制作地址选择器
方法一:4级地址选择器(基于elementui Cascader 级联选择器) 推荐 效果图: 组件源码: <template> <div class="select- ...
- Django rest_frameword 之项目流程
后端开发软件目录规范 一.Model from django.db import models # Create your models here. # 多表的设计 # 图书 作者 出版社 作者详情表 ...