BZOJ 3329: Xorequ(数位dp+递推)
解题思路
可以把原式移项得\(x\)^\(2x\)=\(3x\),而\(x+2x=3x\),说明\(x\)二进制下不能有两个连续的\(1\)。那么第一问就是一个简单的数位\(dp\),第二问考虑递推按位做,设\(f(i)\)表示最后一位为\(0\)的答案,\(g(i)\)表示最后一位为\(1\)的答案,那么\(f(i)=g(i-1)+f(i-1)\),\(g(i)=f(i-1)\),整理一下发现\(f(i)=f(i-1)+f(i-2)\),就是斐波那契的形式,直接矩乘即可。
代码
#include<bits/stdc++.h>
using namespace std;
const int N=70;
const int MOD=1e9+7;
typedef long long LL;
int a[N],len;
LL f[N][2][2],n;
bool vis[N][2][2];
LL DFS(int x,int lst,int lim){
if(vis[x][lst][lim]) return f[x][lst][lim];
vis[x][lst][lim]=1;
if(!x) return f[x][lst][lim]=1;
if(!lst && (lim || a[x])) f[x][lst][lim]=DFS(x-1,1,lim);
f[x][lst][lim]+=DFS(x-1,0,lim|(a[x]==1));
return f[x][lst][lim];
}
struct Matrix{
int a[3][3];
void clear(){
memset(a,0,sizeof(a));
}
void init(){
a[1][1]=a[2][2]=1;
}
friend Matrix operator*(const Matrix A,const Matrix B){
Matrix ret; ret.clear();
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
(ret.a[i][j]+=1ll*A.a[i][k]*B.a[k][j]%MOD)%=MOD;
return ret;
}
}mat,ans;
Matrix fast_pow(Matrix x,LL y){
Matrix ret; ret.clear(); ret.init();
for(;y;y>>=1){
if(y&1) ret=ret*x;
x=x*x;
}
return ret;
}
int main(){
int T; scanf("%d",&T);
while(T--){
memset(vis,false,sizeof(vis));
memset(f,0,sizeof(f));
scanf("%lld",&n); LL nn=n;
len=0;
while(n) a[++len]=(n&1),n>>=1;
printf("%lld\n",DFS(len,0,0)-1);
// cerr<<"!!!"<<endl;
if(nn==1) puts("2");
else if(nn==2) puts("3");
else {
// cerr<<"!!!"<<endl;
ans.clear(); mat.clear();
ans.a[1][1]=2; ans.a[1][2]=3;
mat.a[1][2]=mat.a[2][2]=mat.a[2][1]=1;
ans=ans*fast_pow(mat,nn-2);
printf("%d\n",ans.a[1][2]);
}
}
return 0;
}
BZOJ 3329: Xorequ(数位dp+递推)的更多相关文章
- BZOJ 3329 Xorequ (数位DP、矩阵乘法)
手动博客搬家: 本文发表于20181105 23:18:54, 原地址https://blog.csdn.net/suncongbo/article/details/83758728 题目链接 htt ...
- BZOJ 3329: Xorequ [数位DP 矩阵乘法]
3329: Xorequ 题意:\(\le n \le 10^18\)和\(\le 2^n\)中满足\(x\oplus 3x = 2x\)的解的个数,第二问模1e9+7 \(x\oplus 2x = ...
- BZOJ 3329 - Xorequ - 数位DP, 矩乘
Solution 发现 $x \ xor \ 2x = 3x$ 仅当 $x$ 的二进制中没有相邻的 $1$ 对于第一个问题就可以进行数位DP 了. 但是对于第二个问题, 我们只能通过递推 打表 来算 ...
- BZOJ3329 Xorequ[数位DP+递推矩阵快速幂]
数 位 D P 开 long long 首先第一问是转化. 于是就可以二进制下DP了. 第二问是递推,假设最后$n-1$个01位的填法设为$f[i-1]$(方案包括 ...
- BZOJ.3329.Xorequ(数位DP)
题目链接 x^3x=2x -> x^2x=3x 因为a^b+((a&b)<<1)=a+b,x^2x=x+2x,所以x和2x的二进制表示中不存在相邻的1. (或者,因为x+2x ...
- hdu2089(数位DP 递推形式)
不要62 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- BZOJ 3329 Xorequ 数字DP+矩阵乘法
标题效果:特定n,乞讨[1,n]内[1,2^n]差多少x满足x^3x=2x x^3x=2x相当于x^2x = 3x 和3x=x+2x 和2x=x<<1 因此x满足条件IFFx&(x ...
- bzoj 3329: Xorequ【数位dp+矩阵乘法】
注意第一问不取模!!! 因为a+b=a|b+a&b,a^b=a|b-a&b,所以a+b=a^b+2(a&b) x^3x==2x可根据异或的性质以转成x^2x==3x,根据上面的 ...
- hdu 2604 Queuing(dp递推)
昨晚搞的第二道矩阵快速幂,一开始我还想直接套个矩阵上去(原谅哥模板题做多了),后来看清楚题意后觉得有点像之前做的数位dp的水题,于是就用数位dp的方法去分析,推了好一会总算推出它的递推关系式了(还是菜 ...
随机推荐
- 【Linux开发】【Qt开发】QT 同时支持鼠标和触摸屏
QT 同时支持鼠标和触摸屏 现在 如果我要使用鼠标 导入环境变量 export QWS_MOUSE_PROTO=MouseMan:/dev/input/mice 使用触摸屏,导入环境变量 export ...
- python 并发编程 多进程 队列目录
python 并发编程 多进程 队列 python 并发编程 多进程 生产者消费者模型介绍 python 并发编程 多进程 生产者消费者模型总结 python 并发编程 多进程 JoinableQue ...
- 通过Spark Streaming处理交易数据
Apache Spark 是加州大学伯克利分校的 AMPLabs 开发的开源分布式轻量级通用计算框架. 由于 Spark 基于内存设计,使得它拥有比 Hadoop 更高的性能(极端情况下可以达到 10 ...
- win10远程桌面报出现身份验证错误,要求的函数不受支持
win10远程桌面报出现身份验证错误,要求的函数不受支持 编写人:左丘文 2019-6-6 公司换了一台新笔记本电脑,是win10操作系统,刚想远程连接一下服务器,发现以前很正常的功能,发现不行了.网 ...
- PY 个板子计划【雾
各类板子计划 A+B √ 放个鬼的链接[雾 欧拉筛 √ https://www.cnblogs.com/Judge/p/11690114.html 树状数组 √ 惨痛的教训,以后咱打数据结构的时候绝对 ...
- CSUST 8.3 早训
A - Settlers' Training CodeForces - 63B 题意 给你一串数字,相同的数字为一组,每次可以给一组中的一个数字加一,问这一串数字全变成K需要多少步? 题解 模拟 C+ ...
- P2510 [HAOI2008]下落的圆盘
传送门 首先考虑两个圆覆盖的情况,我们可以求出圆心与交点连线 $A$ 的极角 具体就是求出两圆心连线 $B$ 极角加上余弦定理加反余弦求出 $A,B$ 之间夹角 ,然后覆盖了多少就可以得出 但是多个圆 ...
- 使用form表单提交请求如何获取后台返回的数据?
问题描述 一般的form表单提交是单向的:只能给服务器发送数据,但是无法获取服务器返回的数据,也就是无法读取HTTP应答包. 想要真正的半双工通讯一般需要使用Ajax, 但是Ajax对文件传输也很麻烦 ...
- link标签中rel属性的作用
Link标签有两个作用:1. 定义文档与外部资源的关系:2. 是链接样式表.link标签是用于当前文档引用外部文档的 这个标签的rel属性用于设置对象和链接目标间的关系,说白了就是指明你链进来的对象是 ...
- 理解PHP面向对象三大特性
一.封装性 目的:保护类里面的数据,让类更安全, protected和private只能在类中或子类访问,通过public提供有限的接口供外部访问,封装是控制访问,而不是拒绝访问 封装关键字:publ ...