Buses and People CodeForces 160E 三维偏序+线段树

题意

给定 N 个三元组 (a,b,c),现有 M 个询问,每个询问给定一个三元组 (a',b',c'),求满足 a<a', b'<b, c'<c 的最小 c 对应的元组编号。

解题思路

三维偏序问题,是我第一次做,查的题解。

一位大佬是这么说的,原博客首先,离线处理所有询问,将这 N+M 个元组按照 a 从小到达进行排序,若有相同的 a,则给定元组应该排在询问元组之前。排序后即可保证对于任意一个询问元组,答案一定出现在该元组以前的给定元组中。因为要求的是最小的满足条件的 C,应该在 C 上建立线段树。对 C 进行离散化操作,在 (b,c) 上建立线段树,以 C 为下标,B 为权值。线段树中维护 B 的最大值,询问时在线段树上二分即可。

代码实现(看代码很容易)

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn=2e5+7;
struct node{
int st, ed, t, id;
bool friend operator < (node a, node b)
{
return a.st==b.st ? a.id < b.id : a.st < b.st;
}
}a[maxn];
vector<int> v;
int tot;
int maxx[maxn<<2], id[maxn<<2];
int ans[maxn>>1];
int n, m; void update(int rt, int l, int r, int pos, int val, int ID)
{
if(l==r)
{
//if(maxx[rt] < val)
{
maxx[rt]=val;
id[rt]=ID;
}
return ;
}
int mid=(l+r)>>1;
if(pos<=mid)
update(rt<<1, l, mid, pos, val, ID);
else
update(rt<<1|1, mid+1, r, pos, val, ID);
maxx[rt]=max(maxx[rt<<1], maxx[rt<<1|1]);
}
int query(int rt, int l, int r, int x, int y, int val)
{
if(l==r) return id[rt];
int mid=(l+r)>>1;
int ret=-1;
if(y<=mid)
{
if(maxx[rt<<1] >= val) ret=query(rt<<1, l, mid, x, y, val);
}
else if(x > mid)
{
if(maxx[rt<<1|1] >= val) ret=query(rt<<1|1, mid+1, r, x, y, val);
}
else
{
if( maxx[rt<<1] >= val ) ret=query(rt<<1, l, mid, x, mid, val);
if(ret==-1 && maxx[rt<<1|1] >= val) ret=query(rt<<1|1, mid+1, r, mid+1, y, val);
}
return ret;
}
int main()
{
scanf("%d%d", &n, &m);
for(int i=1; i<=n+m; i++)
{
scanf("%d%d%d", &a[i].st, &a[i].ed, &a[i].t);
a[i].id=i;
v.push_back(a[i].t);
}
sort(v.begin() , v.end());
v.erase( unique(v.begin() , v.end() ), v.end() );
tot=v.size() ;
sort(a+1, a+n+m+1);
for(int i=1; i<=n+m; i++)
{
a[i].t = lower_bound(v.begin() , v.end() , a[i].t) - v.begin() +1;
}
for(int i=1; i<=n+m; i++)
{
if(a[i].id<=n)
update(1, 1, tot, a[i].t, a[i].ed, a[i].id);
else
ans[a[i].id - n]=query(1, 1, tot, a[i].t, tot, a[i].ed);
}
for(int i=1; i<=m; i++)
{
printf("%d ", ans[i]);
}
return 0;
}

Buses and People CodeForces 160E 三维偏序+线段树的更多相关文章

  1. CodeForces 877E DFS序+线段树

    CodeForces 877E DFS序+线段树 题意 就是树上有n个点,然后每个点都有一盏灯,给出初始的状态,1表示亮,0表示不亮,然后有两种操作,第一种是get x,表示你需要输出x的子树和x本身 ...

  2. [Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路)

    [Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路) 题面 有n个空心物品,每个物品有外部体积\(out_i\)和内部体积\(in_i\),如果\(in_i& ...

  3. [Codeforces 1199D]Welfare State(线段树)

    [Codeforces 1199D]Welfare State(线段树) 题面 给出一个长度为n的序列,有q次操作,操作有2种 1.单点修改,把\(a_x\)修改成y 2.区间修改,把序列中值< ...

  4. [Codeforces 316E3]Summer Homework(线段树+斐波那契数列)

    [Codeforces 316E3]Summer Homework(线段树+斐波那契数列) 顺便安利一下这个博客,给了我很大启发(https://gaisaiyuno.github.io/) 题面 有 ...

  5. Codeforces Gym 100231B Intervals 线段树+二分+贪心

    Intervals 题目连接: http://codeforces.com/gym/100231/attachments Description 给你n个区间,告诉你每个区间内都有ci个数 然后你需要 ...

  6. Codeforces 482B Interesting Array(线段树)

    题目链接:Codeforces 482B Interesting Array 题目大意:给定一个长度为N的数组,如今有M个限制,每一个限制有l,r,q,表示从a[l]~a[r]取且后的数一定为q,问是 ...

  7. codeforces 383C Propagating tree 线段树

    http://codeforces.com/problemset/problem/383/C 题目就是说,  给一棵树,将一个节点的值+val, 那么它的子节点都会-val, 子节点的子节点+val. ...

  8. CodeForces 228D. Zigzag(线段树暴力)

    D. Zigzag time limit per test 3 seconds memory limit per test 256 megabytes input standard input out ...

  9. Codeforces 626G Raffles(贪心+线段树)

    G. Raffles time limit per test:5 seconds memory limit per test:256 megabytes input:standard input ou ...

随机推荐

  1. Django【第13篇】:Django之Form组件

    django 之知识点总结以及Form组件 一.model常用操作 1.13个API查询:all,filter,get ,values,values_list,distinct,order_by ,r ...

  2. 36.React基础介绍——2019年12月24日

    2019年12月24日16:47:12 2019年10月25日11:24:29 主要介绍react入门知识. 1.jsx语法介绍 1.1 介绍 jsx语法是一种类似于html标签的语法,它的作用相当于 ...

  3. IO流,字节流复制文件,字符流+缓冲复制文件

    JAVAIO如果按流向分:输入流和输出流两种 输入流的基类:InputStream   Reader 输出流的基类:OutputStream   Writer 如果按数据单元划分:字节流和字符流 字节 ...

  4. mysql OR运算符 语法

    mysql OR运算符 语法 作用:在 WHERE 子语句中把两个或多个条件结合起来. 语法:SELECT * FROM 表名 WHERE 字段1 运算符 值 OR 字段2 运算符 值 说明:如果第一 ...

  5. Element ui 中的Upload用法

    效果图: 代码:

  6. 如何在Web页面里使用高拍仪扫描上传图像

    如何在Web页面里使用高拍仪扫描上传图像 市场上所有的高拍仪都支持扫描图片并保存到本地,一般公司都会提供控件.开发人员只需要在页面集成就可以进行拍照和扫描.只不过一般扫描的图片是保存在本地固定的文件夹 ...

  7. luogu P1037 产生数 x

    P1037 产生数 题目描述 给出一个整数 n(n<10^30) 和 k 个变换规则(k<=15). 规则: 一位数可变换成另一个一位数: 规则的右部不能为零. 例如:n=234.有规则( ...

  8. [CF1082G]Petya and Graph:最小割

    分析 发这篇博客的目的就是要让你们知道博主到底有多菜. 类似于[NOI2006]最大获利.(明明就是一模一样好吧!) 不知道怎么了,半秒就想到用网络流,却没想出怎么建图. 连这么简单的题都没做出来,我 ...

  9. 进程(process)和线程(thread)

    1.计算机的核心是CPU,它承担了所有的计算任务.它就像一座工厂,时刻在运行. 2.假定工厂的电力有限,一次只能供给一个车间使用.也就是说,一个车间开工的时候,其他车间都必须停工.背后的含义就是,单个 ...

  10. centos6.X mysql 5.1 主主配置

    1.配置文件 A库的配置文件: 在 /etc/my.cnf [mysqld] 段 新增: server_id= # log_bin 日志路径.格式以及删除时间(30天) log_bin=/var/li ...