题意简述

给你一个三维的坐标系,坐标系上 \((x_i+y_i+z_i)\bmod 3 = 0\) 的点内有能量源。给定 \(n\) 个点含有能量值为 \(c_i\) 的水晶,如果一个水晶位于能量源上,这个水晶的能量值将会提高 \(10\%\)。

水晶有两种共振情况,一是相邻的三个水晶共振,二是两个水晶在一条长度为 \(2\) 的线段两端,且线段中点是能量源。

你可以炸掉一些水晶,请问没有共振之后剩余水晶的最大能量值。

做法

对于 \((x_i+y_i+z_i)\bmod 3 \not = 0\) 的点黑白染色,如果一个能量源的周围同时存在黑白两种颜色的点,那么必定构成共振,如图所示

于是我们可以把 \(\bmod 3\) 意义下的三种点分别拆点。考虑对于每个共振,要用最小代价破坏,显然是一个最小割的模型。把每个点拆点,边权为水晶的能量值 \(c_i\) 。然后源点连 \(1\) 的点,\(1\) 连 \(0\),\(0\) 连 \(2\),\(2\) 连 汇点,答案为水晶的总能量 \(\sum c_i\) 减最大流。这里给出代码实现:

const int inf=1e9;
inline void link(int a,int b,int c)
{
add_edge(S,a<<1,inf);add_edge(a<<1|1,b<<1,inf);
add_edge(b<<1|1,c<<1,inf);add_edge(c<<1|1,T,inf);
}

然后我们用一个结构体来表示每一个点,将\((x_i,y_i,z_i)\)转换为\((x_i-z_i,y_i-z_i)\),用一个向量的结构体来封存,重载<+预算符,用一个map来对向量进行操作,本题就结束了。

代码实现

map常数大跑不快,但是很好写。

#include<bits/stdc++.h>
using namespace std;
#define re register int
#define ll long long
#define ak *
#define in inline
#define db double
in char getch()
{
static char buf[1<<12],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<12,stdin),p1==p2)?EOF:*p1++;
}
char qwq;
#define gc() getchar()
in int read()
{
re cz=0,ioi=1;qwq=gc();
while(qwq<'0'||qwq>'9') ioi=qwq=='-'?~ioi+1:1,qwq=gc();
while(qwq>='0'&&qwq<='9') cz=(cz<<3)+(cz<<1)+(qwq^48),qwq=gc();
return cz ak ioi;
}
const int N=5e4+5,inf=1e9;
int n,m,h[N<<1],cnt=1,dis[N<<1],s,t,q[N<<1],l,r,cur[N<<1],tot,sum;
struct did{int next,to,f;}e[N*20];
in void add(re x,re y,re z)
{
e[++cnt]=(did){h[x],y,z},h[x]=cnt;
e[++cnt]=(did){h[y],x,0},h[y]=cnt;
}
const db eps=1e-9;
inline int bfs(re u)
{
memset(dis,-1,sizeof(dis));dis[u]=0;
l=r=0;q[++r]=u;
while(l<r)
{
re i=q[++l]; if(i==t) return 1;
for(re j=h[i],k;k=e[j].to,j;j=e[j].next)
if(dis[k]<0&&e[j].f) dis[k]=dis[i]+1,q[++r]=k;
}
return 0;
}
in int dfs(re u,re maxf)
{
re res=0;
if(u==t||!maxf) return maxf;
for(re &i=cur[u],v;v=e[i].to,i;i=e[i].next)
if(e[i].f&&dis[v]==dis[u]+1)
{
re delta=dfs(v,min(maxf,e[i].f));
e[i].f-=delta;e[i^1].f+=delta;
res+=delta;maxf-=delta;
if(!maxf) return res;
}
if (fabs(maxf-res)<eps) dis[u]=-2;
return res;
}
inline int dinic()
{
re ans=0;
while(bfs(s)) memcpy(cur,h,sizeof(h)),ans+=dfs(s,inf);
return ans;
}
struct poi //poipoi qwq~
{
int x,y;
poi (re a=0,re b=0) {x=a,y=b;}
in bool operator < (poi a) const {return x==a.x?y<a.y:x<a.x;}
in poi operator + (poi a) const {return poi(x+a.x,y+a.y);}
}p[N];
map<poi,int>mp,ext,f,book;
in void link(re a,re b,re c)
{
if(!book[poi(s,a)]) add(s,a<<1,inf),book[poi(1,a)]=1;
if(!book[poi(a,b)]) add(a<<1|1,b<<1,inf),book[poi(a,b)]=1;
if(!book[poi(b,c)]) add(b<<1|1,c<<1,inf),book[poi(b,c)]=1;
if(!book[poi(c,t)]) add(c<<1|1,t,inf),book[poi(c,a)]=1;
}
int main()
{
n=read();
for(re i=1;i<=n;i++)
{
re x=read(),y=read(),z=read(),c=read();
p[i]=poi(x-z,y-z);if(!ext[p[i]]) ext[p[i]]=++tot;
mp[p[i]]+=c;f[p[i]]=((x+y+z)%3==0);
}
s=1,t=tot+1<<1;
for(re i=1;i<=n;i++) if(f[p[i]]<2)
{
re pt=ext[p[i]],ene=mp[p[i]]*(10+f[p[i]]);sum+=ene;
add(2*pt,2*pt+1,ene);if(!f[p[i]]) {f[p[i]]=2;continue;}
static int a[N],b[N];re na=0,nb=0;f[p[i]]=2;
if(!(a[++na]=ext[p[i]+poi(0,1)])) na--;
if(!(a[++na]=ext[p[i]+poi(1,0)])) na--;
if(!(a[++na]=ext[p[i]+poi(-1,-1)])) na--;
if(!(b[++nb]=ext[p[i]+poi(0,-1)])) nb--;
if(!(b[++nb]=ext[p[i]+poi(-1,0)])) nb--;
if(!(b[++nb]=ext[p[i]+poi(1,1)])) nb--;
for(re x=1;x<=na;x++)
for(re y=1;y<=nb;y++)
link(a[x],pt,b[y]);
}
printf("%.1lf",(db)(sum-dinic())/10);
return 0;
}

BZOJ4625 [BJOI2016]水晶 最小割的更多相关文章

  1. 【BZOJ-1976】能量魔方Cube 最小割 + 黑白染色

    1976: [BeiJing2010组队]能量魔方 Cube Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 884  Solved: 307[Submi ...

  2. Bzoj 1976: [BeiJing2010组队]能量魔方 Cube 最小割,最大流

    1976: [BeiJing2010组队]能量魔方 Cube Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 879  Solved: 304[Submi ...

  3. [bzoj4625][BeiJing2016]水晶

    来自FallDream的博客,未经允许,请勿转载,谢谢. 不用惊慌,今天的题都不是小强出的.——融入了无数心血的作品,现在却不得不亲手毁掉,难以体会他的心情啊 .——那也是没有办法的事情,能量共振不消 ...

  4. 【BZOJ1976】能量魔方 [最小割]

    能量魔方 Time Limit: 10 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Description 小C 有一个能量魔方,这个魔方可神奇 ...

  5. 【BZOJ1976】[BeiJing2010组队]能量魔方 Cube 最小割

    [BZOJ1976][BeiJing2010组队]能量魔方 Cube Description 小C 有一个能量魔方,这个魔方可神奇了,只要按照特定方式,放入不同的 能量水晶,就可以产生巨大的能量. 能 ...

  6. 【bzoj1976】[BeiJing2010组队]能量魔方 Cube 网络流最小割

    题目描述 一个n*n*n的立方体,每个位置为0或1.有些位置已经确定,还有一些需要待填入.问最后可以得到的 相邻且填入的数不同的点对 的数目最大. 输入 第一行包含一个数N,表示魔方的大小. 接下来 ...

  7. BZOJ 1391: [Ceoi2008]order [最小割]

    1391: [Ceoi2008]order Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1509  Solved: 460[Submit][Statu ...

  8. BZOJ-2127-happiness(最小割)

    2127: happiness(题解) Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1806  Solved: 875 Description 高一 ...

  9. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

随机推荐

  1. Git-Runoob:Git 创建仓库

    ylbtech-Git-Runoob:Git 创建仓库 1.返回顶部 1. Git 创建仓库 本章节我们将为大家介绍如何创建一个 Git 仓库. 你可以使用一个已经存在的目录作为Git仓库. git ...

  2. 解决保存快照失败后redis无法写入的问题( Redis is configured to save RDB snapshots)

    MISCONF Redis is configured to save RDB snapshots, but is currently not able to persist on disk. Com ...

  3. robot framework断言

    一.基础 RobotFramework带有丰富的系统关键,使用时无需导入,直接使用,为写自动化用例带来了极大的方便:不能停留在知道或者是会得程度,只有熟练使用各关键字,才能提升自动化用例的写作效率.下 ...

  4. python学习笔记:(二)基本数据类型

    python中的变量不需要声明,每个变量中使用前都必须赋值,变量赋值以后该变量才会被创建. 在python中变量就是变量,他没有类型,我们所说的类型是变量所指的内存中对象的类型. python3中有六 ...

  5. 2018.03.29 python-matplotlib 图表生成

    '''Matplotlib -> 一个python版的matlab绘图接口,以2D为主,支持python,numpy,pandas基本数据结构,高效图标库''' import numpy as ...

  6. Elasticsearch5安装以及部署Head插件

    请看完再动手,两篇文章都是找来的,合并在一起了,前半部分是参考,我是按照后半部分做的,而且执行中间也有坑. Elasticsearch5.X及 head插件 安装说明: 1.下载elasticsear ...

  7. Cocos2d-X网络编程(4) Cocos2d中的网络通信协议——Socket通信

    Socket,俗称网络套接字,本身并不是协议,而是一个调用接口,是对TCP/IP协议的封装和应用,.提供了一系列方法方便开发者进行网络通讯. TCP/IP协议是使用最早的通讯协议,它是传输层协议,主要 ...

  8. python+selenium下载文件——firefox

    修改Firefox的相关配置. 1.profile.set_preference('browser.download.folderList',2) 设置成0代表桌面,1代表下载到浏览器默认下载路径:2 ...

  9. [P5348]密码解锁

    Description 给一个长度为 \(n\) 的数组 \(a[1\dots n]\) ,满足 \(\sum_{m|x}a[x] = \mu(m)\),求 \(a[m]\). \(n\le 10^{ ...

  10. 洛谷 P2196 挖地雷 & [NOIP1996提高组](搜索,记录路径)

    传送门 解题思路 就是暴力!!! 没什么好说的,总之,就是枚举每一个起点,然后暴力算一遍以这个点为起点的所有路径,在算的过程中,只要比目前找到的答案更优,就有可能是最后的答案,于是就把路径更新一遍,保 ...