luoguP4859 已经没有什么好害怕的了(二项式反演)
luoguP4859 已经没有什么好害怕的了(二项式反演)
祭奠天国的bzoj。
题解时间
先特判 $ n - k $ 为奇数无解。
为了方便下记 $ m = ( n + k ) / 2 $ 为 $ A>B $ 的个数。
恰好改钦定。
设 $ dp( i , j ) $ 为考虑 $ A $ 的前 $ i $ 个数钦定 $ j $ 对 $ A>B $ 的方案数。
有钦定 $ g( i ) = dp( n , i ) \times ( n - i )! $ 。
然后直接二项式反演 $ f( m ) = \sum\limits_{ i = m }^{ n } ( - 1 )^{ i - m } \binom{ i }{ m } g( i ) $ 。
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long lint;
struct pat{int x,y;pat(int x=0,int y=0):x(x),y(y){}bool operator<(const pat &p)const{return x==p.x?y<p.y:x<p.x;}};
template<typename TP>inline void read(TP &tar)
{
TP ret=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){ret=ret*10+(ch-'0');ch=getchar();}
tar=ret*f;
}
namespace RKK
{
const int N=2011,mo=1000000009;
lint add(lint a,lint b){return (a+=b)>=mo?a-mo:a;}
void doadd(lint &a,lint b){if(b<0) b+=mo;if((a+=b)>=mo) a-=mo;}
lint fac[N],c[N][N];
void init()
{
fac[0]=1;for(int i=1;i<=2000;i++) fac[i]=fac[i-1]*i%mo;
for(int i=0;i<=2000;i++) c[i][0]=1;
for(int i=1;i<=2000;i++)for(int j=1;j<=i;j++) c[i][j]=add(c[i-1][j-1],c[i-1][j]);
}
int n,m,a[N],b[N];
lint dp[N][N],ans;
int main()
{
init(),read(n),read(m);for(int i=1;i<=n;i++) read(a[i]);for(int i=1;i<=n;i++) read(b[i]);sort(a+1,a+1+n),sort(b+1,b+1+n);
if((n-m)&1){puts("0");return 0;}m=(n+m)/2;
for(int i=0;i<=n;i++) dp[i][0]=1;
for(int i=1,k=1;i<=n;i++)
{
while(k<=n&&a[i]>b[k]) k++;
for(int j=1;j<=n;j++) dp[i][j]=add(dp[i-1][j],dp[i-1][j-1]*(k-j)%mo);
}
for(int i=m;i<=n;i++) doadd(ans,(((i-m)&1)?-1ll:1ll)*c[i][m]*dp[n][i]%mo*fac[n-i]%mo);
printf("%lld\n",ans);
return 0;
}
}
int main(){return RKK::main();}
luoguP4859 已经没有什么好害怕的了(二项式反演)的更多相关文章
- bzoj 3622 已经没有什么好害怕的了——二项式反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3622 令 f[i] 表示钦定 i 对 a[ ]>b[ ] 的关系的方案数:g[i] 表 ...
- BZOJ3622 已经没有什么好害怕的了 二项式反演+DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3622 题解 首先显然如果 \(n - k\) 为奇数那么就是无解.否则的话,"糖果& ...
- BZOJ 3622: 已经没有什么好害怕的了(二项式反演)
传送门 解题思路 首先将\(a\),\(b\)排序,然后可以算出\(t(i)\),表示\(a(i)\)比多少个\(b(i)\)大,根据容斥套路,设\(f(k)\)表示恰好有\(k\)个\(a(i)\) ...
- P4859 已经没有什么好害怕的了(dp+二项式反演)
P4859 已经没有什么好害怕的了 啥是二项式反演(转) 如果你看不太懂二项式反演(比如我) 那么只需要记住:对于某两个$g(i),f(i)$ ---------------------------- ...
- BZOJ3622 已经没有什么好害怕的了 【dp + 二项式反演】
题目链接 BZOJ3622 题解 既已开题 那就已经没有什么好害怕的了 由题目中奇怪的条件我们可以特判掉\(n - k\)为奇数时答案为\(0\) 否则我们要求的就是糖果大于药片恰好有\(\frac{ ...
- 洛谷4859 BZOJ3622 已经没什么好害怕的了(DP,二项式反演)
题目链接: 洛谷 BZOJ 题目大意:有两个长为 $n$ 的序列 $a,b$,问有多少种重排 $b$ 的方式,使得满足 $a_i>b_i$ 的 $i$ 的个数比满足 $a_i<b_i$ 的 ...
- BZOJ 3622 : 已经没有什么好害怕的了(dp + 广义容斥原理)
今天没听懂 h10 的讲课 但已经没有什么好害怕的了 题意 给你两个序列 \(a,b\) 每个序列共 \(n\) 个数 , 数之间两两不同 问 \(a\) 与 \(b\) 之间有多少配对方案 使得 \ ...
- 洛谷 P4859 已经没有什么好害怕的了 解题报告
已经没有什么好害怕的了 题目描述 已经使\(\tt{Modoka}\)有签订契约,和自己一起战斗的想法后,\(\tt{Mami}\)忽然感到自己不再是孤单一人了呢. 于是,之前的谨慎的战斗作风也消失了 ...
- 题解-洛谷P4859 已经没有什么好害怕的了
洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...
随机推荐
- VUE3 之 动画与过渡的实现 - 这个系列的教程通俗易懂,适合新手
1. 概述 光环效应告诉我们: 当一个人在某一方面取得了巨大的成功,人们就会给他贴上正面的标签,这个人从此就被"优秀"的光环所笼罩,他做的一切,人们都认为是正确的. 例如:越是名气 ...
- Golang Sync.WaitGroup 使用及原理
Golang Sync.WaitGroup 使用及原理 使用 func main() { var wg sync.WaitGroup for i := 0; i < 10; i++ { wg.A ...
- MHA + Maxscale 数据库的高可用和读写分离
MySQL 常见发行版本 MySQL 标准化.自动化部署 深入浅出MySQL备份与恢复 深入理解MySQL主从复制 MySQL构架设计与容量规划 MHA Maxscale MySQL 常见发行版本 M ...
- Python中模块调用说明
1 import test # 导入test模块 2 3 print(test.a) # 使用"模块.变量"调用模块中的变量 4 5 test.hi() # 使用"模块. ...
- Python中类的定制
1 class Chinese: 2 eye = 'black' 3 4 def eat(self): 5 print('吃饭,选择用筷子.') 6 7 class Guangdong(Chinese ...
- Spring Cloud Nacos实现动态配置加载的源码分析
理解了上述Environment的基本原理后,如何从远程服务器上加载配置到Spring的Environment中. NacosPropertySourceLocator 顺着前面的分析思路,我们很自然 ...
- 思迈特软件Smartbi的特色功能有哪些?
Smartbi产品价值: 从最终用户角度 管理层:KPI监控.风险预警.绩效考核.大屏展示,移动分析,实现经营管理主题(财务.销售.人事.绩效等)的直观监控,为经营管理提供决策支持 分析人员:拖拽式的 ...
- Blazor和Vue对比学习:说在开始前
1.Vue:现代前端三大框架之一(Vue/React/Angualr),基于HTML.CSS和JavaScript,2014年正式对外发布,目前已发展到3.X版本.值得说道的是,Vue的创始人作者是华 ...
- 如何在win10系统上安装linux子系统
对于软件开发人员来说,linux基本上是一个绕不过去的槛. 因为工作经常要用到linux,电脑用纯linux还是windows + 虚拟机装linux,我一直纠结. 如果装个纯linux,则一些win ...
- 【C# IO 操作 】详解去掉字符顺序标记(BOM)头的方法
类似WINDOWS自带的记事本等软件,在保存一个以UTF-8编码的文件时,会在文件开始的地方插入三个不可见的字符(0xEF 0xBB 0xBF,即BOM).它是一串隐藏的字符,用于让记事本等编辑器识别 ...