题目:

honoka最近在研究三角形计数问题。
她认为,满足以下三个条件的三角形是“好三角形”。
1.三角形的三个顶点均为格点,即横坐标和纵坐标均为整数。
2.三角形的面积为 
3.三角形至少有一条边和 轴或 轴平行。
honoka想知道,在平面中选取一个大小为  的矩形格点阵,可以找到多少个不同的“好三角形”?由于答案可能过大,请对 取模。
 
思路:
分两种情况讨论:
(1)两条边和两个坐标轴平行
(2)只有一条边和某个坐标轴平行
首先根据题中的条件可以看出三角型是低与高是1*2或是2*1.
第一种情况:
如图,一共有4*(n-2)*(m-1)+4*(m-2)*(n-1)种。


第二种情况:
可以分为底边为 2、高为 1 和底边为 1 、高为 2的情况。
①对于底边为2,高为1

若底边和x轴平行,那么底边在x方向上有 m−2 种可能,顶点在x方向上也有 m−2(顶点的位置一共有m个,减去第一种情况中的两种)种可能,在y方向上有 n-1 种可能;

故共有2*(m-2)*(m-2)*(n-1)

若底边和y轴平行,同理可推出2*(n-2)*(n-2)*(m-1)

②对于底边为1,高为2的情况
 
底边与x轴平行时 2*(m-1)*(m-2)*(n-2)
底边与y轴平行时2*(n-1)*(n-2)*(m-2)。
最后将所有的情况的都加起来最终解,注意用long long 存储,进行相加的时候要及时取模。

代码:

 1 #include <map>
2 #include <set>
3 #include <list>
4 #include <stack>
5 #include <queue>
6 #include <deque>
7 #include <cmath>
8 #include <ctime>
9 #include <string>
10 #include <limits>
11 #include <cstdio>
12 #include <vector>
13 #include <iomanip>
14 #include <cstdlib>
15 #include <cstring>
16 #include <istream>
17 #include <iostream>
18 #include <algorithm>
19 #define ci cin
20 #define co cout
21 #define el endl
22 #define Scc(c) scanf("%c",&c)
23 #define Scs(s) scanf("%s",s)
24 #define Sci(x) scanf("%d",&x)
25 #define Sci2(x, y) scanf("%d%d",&x,&y)
26 #define Sci3(x, y, z) scanf("%d%d%d",&x,&y,&z)
27 #define Scl(x) scanf("%I64d",&x)
28 #define Scl2(x, y) scanf("%I64d%I64d",&x,&y)
29 #define Scl3(x, y, z) scanf("%I64d%I64d%I64d",&x,&y,&z)
30 #define Pri(x) printf("%d\n",x)
31 #define Prl(x) printf("%I64d\n",x)
32 #define Prc(c) printf("%c\n",c)
33 #define Prs(s) printf("%s\n",s)
34 #define For(i,x,y) for(int i=x;i<y;i++)
35 #define For_(i,x,y) for(int i=x;i<=y;i++)
36 #define FFor(i,x,y) for(int i=x;i>y;i--)
37 #define FFor_(i,x,y) for(int i=x;i>=y;i--)
38 #define Mem(f, x) memset(f,x,sizeof(f))
39 #define LL long long
40 #define ULL unsigned long long
41 #define MAXSIZE 100005
42 #define INF 0x3f3f3f3f
43
44 const int mod=1e9+7;
45 const double PI = acos(-1.0);
46
47 using namespace std;
48
49 int main(){
50 LL n,m;
51 //Sci2(n,m);
52 ci>>n>>m;
53 LL sum=(n-2)*(m-1)*4%mod+(n-1)*(m-2)*4%mod;
54 sum=(sum+2*(n-1)*(m-2)%mod*(m-2)%mod+2*(m-1)*(n-2)%mod*(n-2)%mod)%mod;
55 sum=(sum+2*(n-2)*(m-1)%mod*(m-2)%mod+2*(m-2)*(n-1)%mod*(n-2)%mod)%mod;
56 co<<sum;
57 return 0;
58 }

honoka和格点三角形的更多相关文章

  1. honoka和格点三角形(牛客寒假训练营day1)

    可以把面积为1的好三角形分成两类分开统计:两条边和两个坐标轴平行:只有一条边和某个坐标轴平行. 对于第一种情况,一定是1*2或者2*1的形式,一个1*2的矩形中含有4个不同的三角形.总数是4*((n- ...

  2. 2020牛客寒假算法基础集训营1 J题可以回顾回顾

    2020牛客寒假算法基础集训营1 这套题整体来说还是很简单的. A.honoka和格点三角形 这个题目不是很难,不过要考虑周全,面积是1,那么底边的长度可以是1也可以是2, 注意底边1和2会有重复的, ...

  3. 【BZOJ2731】三角形覆盖问题

    想象一条平行于\(y\)轴的扫描线,从低往高扫描.如何确定关键高度才能使每两个关键高度之间分割出的图形易于计算呢? 关键高度有:三角形底边高度.三角形上顶点高度.三角形交点的高度. ​ 如此分割,我们 ...

  4. hihocoder #1456 : Rikka with Lattice(杜教筛)

    hihocoder #1456 : Rikka with Lattice(杜教筛) 题意 : 给你一个\(n*m\)方格图,统计上面有多少个格点三角形,除了三个顶点,不覆盖其他的格点(包括边和内部). ...

  5. HZNU ACM一日游 2019.3.17 【2,4,6-三硝基甲苯(TNT)】

    Travel Diary 早上8:00到HG,听说hjc20032003在等我. 然后他竟然鸽我...最后还是勉强在8:30坐上去偏僻的HZNU的地铁. 到文新,然后带上fjl,打滴滴,一行人来到了H ...

  6. Pick定理、欧拉公式和圆的反演

    Pick定理.欧拉公式和圆的反演 Tags:高级算法 Pick定理 内容 定点都是整点的多边形,内部整点数为\(innod\),边界整点数\(ednod\),\(S=innod+\frac{ednod ...

  7. 2016级算法第三次上机-E.ModricWang's Polygons

    930 ModricWang's Polygons 思路 首先要想明白,哪些多边形可能是格点正多边形? 分情况考虑: 三角形不可能,因为边长为有理数的正三角形的面积为无理数,而格点三角形的面积为有理数 ...

  8. luogu 2735 电网 皮克公式

    题目链接 题意 给定一个格点三角形,三个顶点分别为(0,0),(n,m),(p,0),求三角形内部的格点个数. 思路 皮克公式: \[S = \frac{i}{2}+b-1\] \(S\)为三角形面积 ...

  9. 基于GPU的优化处理

    http://www.cnblogs.com/wuhanhoutao/archive/2007/11/10/955293.html 早期的三维场景绘制,显卡只是为屏幕上显示像素提供一个缓存,所有的图形 ...

  10. 牛客小白月赛5 E 面积 计算三角形面积模板 波尔约-格维也纳定理 匹克公式

    链接:https://www.nowcoder.com/acm/contest/135/E来源:牛客网 题目描述 定义“最大生成图”:在M*N的点阵中,连接一些点形成一条经过所有点恰好一次的回路,且连 ...

随机推荐

  1. jmeter 从多个数中随机取一个值的方法

    问题描述:使用jmeter进行接口测试时,遇到枚举值(如:10代表闲置.15代表使用中.20代表维修等)我们需要随机取一个类型传到接口中. 解决思路:通过函数助手查找随机函数,找到__chooseRa ...

  2. (四) 一文搞懂 JMM - 内存模型

    4.JMM - 内存模型 1.JMM内存模型 JMM与happen-before 1.可见性问题产生原因 下图为x86架构下CPU缓存的布局,即在一个CPU 4核下,L1.L2.L3三级缓存与主内存的 ...

  3. SpringBoot向Excel模板中写入数据并下载 (无需获取file对象及模板绝对路径)

    之前用获取模板路径的方式测试没问题打包后就有问题了 莫名出现一个! 找了很多教程尝试无果 最终使用下面这个方式 无需获取file对象以及模板路径的方式进行写入下载 (那个设置浏览器编码没有测试不知道能 ...

  4. 创建第一个WebService项目

    前提: 保证联网的情况下创建webservice实例,需下载依赖jar 一.创建WebService服务端 1.创建服务端的工程 2.创建javaee的WebServices服务 3.命名server ...

  5. 记一次 .NET 某工控MES程序 崩溃分析

    一:背景 1.讲故事 前几天有位朋友找到我,说他的程序出现了偶发性崩溃,已经抓到了dump文件,Windows事件日志显示的崩溃点在 clr.dll 中,让我帮忙看下是怎么回事,那到底怎么回事呢? 上 ...

  6. jsvmp_wencai

    网站 aHR0cDovL3d3dy5pd2VuY2FpLmNvbS91bmlmaWVkd2FwL2hvbWUvaW5kZXg= 直接搜索关键词 下面是要抓取的数据 逆向位置(一个即可) hook到he ...

  7. ARL灯塔系统搭建

    前言 ARL(Asset Reconnaissance Lighthouse)资产侦查灯塔,是一个良好的资产收集系统,旨在为渗透测试人员以及安全团队基于企业的网络安全能快速查找到指定企业资产中的脆弱点 ...

  8. LFU 的设计与实现

    LFU 的设计与实现 作者:Grey 原文地址: 博客园:LFU 的设计与实现 CSDN:LFU 的设计与实现 题目描述 LFU(least frequently used).即最不经常使用页置换算法 ...

  9. 分享一个自己在用的.net 中mysql事务控制类(支持多条sql,参数化,自定义判断条件,错误点返回等)

    1)首先看下事务控制器. using MySql.Data.MySqlClient; using System; using System.Collections.Generic; using Sys ...

  10. 【学习笔记】Splay

    \(\texttt{0x01}\) 前言 Splay 树(伸展树)是一棵二叉搜索树,由 Daniel Sleator 和 Robert Tarjan 于 1985 年发明.它凭借旋转可以有 $O(\l ...