cv::inRange
// 简单实现
cv::namedWindow("Example 2-3", cv::WINDOW_AUTOSIZE); cv::VideoCapture cap; cap.open(0);
cout << "Opened file: " << argv[1] << endl; cv::Mat frame, frame_threshold;
int low_r = 30, low_g = 30, low_b = 30;
int high_r = 100, high_g = 100, high_b = 100; for (;;) { cap >> frame; if (frame.empty()) break; // Ran out of film inRange(frame, cv::Scalar(low_b, low_g, low_r), cv::Scalar(high_b, high_g, high_r), frame_threshold);
//-- Show the frames
imshow("Video Capture", frame);
imshow("Object Detection", frame_threshold); if ((char)cv::waitKey(33) >= 0) break; } return 0;
// 完整实现
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
#include <stdlib.h>
using namespace std;
using namespace cv;
void on_low_r_thresh_trackbar(int, void*);
void on_high_r_thresh_trackbar(int, void*);
void on_low_g_thresh_trackbar(int, void*);
void on_high_g_thresh_trackbar(int, void*);
void on_low_b_thresh_trackbar(int, void*);
void on_high_b_thresh_trackbar(int, void*);
int low_r = 30, low_g = 30, low_b = 30;
int high_r = 100, high_g = 100, high_b = 100;
int main()
{
Mat frame, frame_threshold;
VideoCapture cap(0);
namedWindow("Video Capture", WINDOW_NORMAL);
namedWindow("Object Detection", WINDOW_NORMAL);
//-- Trackbars to set thresholds for RGB values
createTrackbar("Low R", "Object Detection", &low_r, 255, on_low_r_thresh_trackbar);
createTrackbar("High R", "Object Detection", &high_r, 255, on_high_r_thresh_trackbar);
createTrackbar("Low G", "Object Detection", &low_g, 255, on_low_g_thresh_trackbar);
createTrackbar("High G", "Object Detection", &high_g, 255, on_high_g_thresh_trackbar);
createTrackbar("Low B", "Object Detection", &low_b, 255, on_low_b_thresh_trackbar);
createTrackbar("High B", "Object Detection", &high_b, 255, on_high_b_thresh_trackbar);
while ((char)waitKey(1) != 'q') {
cap >> frame;
if (frame.empty())
break;
//-- Detect the object based on RGB Range Values
inRange(frame, Scalar(low_b, low_g, low_r), Scalar(high_b, high_g, high_r), frame_threshold);
//-- Show the frames
imshow("Video Capture", frame);
imshow("Object Detection", frame_threshold);
}
return 0;
}
void on_low_r_thresh_trackbar(int, void*)
{
low_r = min(high_r - 1, low_r);
setTrackbarPos("Low R", "Object Detection", low_r);
}
void on_high_r_thresh_trackbar(int, void*)
{
high_r = max(high_r, low_r + 1);
setTrackbarPos("High R", "Object Detection", high_r);
}
void on_low_g_thresh_trackbar(int, void*)
{
low_g = min(high_g - 1, low_g);
setTrackbarPos("Low G", "Object Detection", low_g);
}
void on_high_g_thresh_trackbar(int, void*)
{
high_g = max(high_g, low_g + 1);
setTrackbarPos("High G", "Object Detection", high_g);
}
void on_low_b_thresh_trackbar(int, void*)
{
low_b = min(high_b - 1, low_b);
setTrackbarPos("Low B", "Object Detection", low_b);
}
void on_high_b_thresh_trackbar(int, void*)
{
high_b = max(high_b, low_b + 1);
setTrackbarPos("High B", "Object Detection", high_b);
}
参考:https://www.w3cschool.cn/opencv/opencv-k1vh2cod.html
cv::inRange的更多相关文章
- opencv函数之cv.InRange函数
2018-03-0421:22:46 (1)cv.InRange函数 void cvInRange(//提取图像中在阈值中间的部分 const CvArr* src,//目标图像const CvArr ...
- 『OpenCV3』基于色彩分割图片
一.遍历图像实现色彩掩码 本节我们实现这样一个算法,我们指定某种颜色和一个阈值,根据输入图片生成一张掩码,标记符合的像素(和指定颜色的差异在阈值容忍内). 源代码如下,我们使用一个class完成这个目 ...
- openCV 色彩空间
---恢复内容开始--- 1.使用cv2.inrange()获取某个范围内的图像取值,指定某个通道的最小值和最大值 import numpy as np def color_space(image): ...
- Python+OpenCV图像处理(四)—— 色彩空间
一.色彩空间的转换 代码如下: #色彩空间转换 import cv2 as cv def color_space_demo(img): gray = cv.cvtColor(img, cv.COLOR ...
- 车道线识别/Opencv/传统方法
车道检测(Advanced Lane Finding Project) 实现步骤: 使用提供的一组棋盘格图片计算相机校正矩阵(camera calibration matrix)和失真系数(disto ...
- OpenCV---像素运算
像素运算 分为算术运算和逻辑运算 算术运算: 加减乘除 调节亮度 调整对比度 逻辑运算: 与或非 遮罩层控制 一:算术运算 import cv2 as cv import numpy as np de ...
- OpenCV---色彩空间(二)HSV追踪颜色对象和通道分离与合并
一:HSV追踪有颜色对象 def inRange(src, lowerb, upperb, dst=None) #lowerb是上面每个颜色分段的最小值,upperb是上面每个颜色分段的最大值,都是列 ...
- 3、OpenCV Python 色彩空间
__author__ = "WSX" import cv2 as cv import numpy as np def color_space( img ): gray_img = ...
- [视觉识别]OpenCV + CNN 大神符识别
数据集 Mnist数据集:http://yann.lecun.com/exdb/mnist/ 训练 import numpy as np from keras.datasets import mnis ...
- 用Camshift算法对指定目标进行跟踪
原理 Camshift算法是Continuously Adaptive Mean Shift algorithm的简称. 它是一个基于MeanSift的改进算法.它首次由Gary R.Bradski等 ...
随机推荐
- css3的的新特性
1.transform 2.calc 3.transition
- antdVue 重置select和input的样式 去掉蓝色换成灰色
代码实现: <template> <div> <a-select mode="tags" style="width: 200px" ...
- VUE学习-条件渲染
条件渲染 v-if & v-else-if & v-else <div id="app"> <h1 v-if="type == 'VUE ...
- iOS ProtocolBuffer使用介绍
ProtocolBuffer 简介 Protocol Buffer 是google 的一种数据交换的格式 Protocol Buffer 和 XML.JSON一样都是结构数据序列化的工具,但它们的数据 ...
- 设置view的圆角和阴影
1.设置view圆角 self.backView.clipsToBounds = YES; self.backView.layer.cornerRadius = 6.f; 2.设置view阴影 sel ...
- 072_关于Dataloader导入Record的创建时间及修改时间并允许owner是Inactive
1.在User interface 中 启用 Enable "Set Audit Fields upon Record Creation" and "Update Rec ...
- Java脚本操作mysql和接口
一.Java操作MySQL 1.插入insert 1 import java.sql.*; 2 import java.util.UUID; 3 4 public class BigData { 5 ...
- snapshot备份
snapshot C: "h:\esd\$date_$hour_$minute_C.sna" -L0 -R -G snapshot64.exe C: "H:\ESD\$d ...
- HCIP-进阶实验06-多实例生成树安全部署
HCIP-ICT进阶实验06-多实例生成树安全部署 1 实验需求 1.1 实验拓扑 1.2 实验环境说明 IP地址规划表: 设备 接口 IP 地址 备注 SW1 VLANIF10 192.168.10 ...
- [OC] UIWebView APIs 的替换 以及转用WKWebView后的部分问题
一.检查工程中的 UIWebView 1.打开终端,cd + 把项目的工程文件所在文件夹拖入终端(即 得到项目的工程文件所在的路径) 2.输入以下命令: grep -r UIWebView . 注意最 ...