Attention Mechanism in Computer Vision
前言 本文系统全面地介绍了Attention机制的不同类别,介绍了每个类别的原理、优缺点。
欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读、CV招聘信息。
概述
Attention机制目的在于聚焦有用的信息,并减少不重要信息的比重。Attention机制可以分为6大类,包括4个基础类别和2个组合类别。4个基础类别分别是通道注意力(channel attention),空间注意力(spatial attention),时间注意力(temporal attention),分支注意力(branch attention)。2个组合类别即通道与空间的组合,空间与时间的组合。

欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读、CV招聘信息。
CV技术指南创建了一个免费的知识星球。关注公众号添加编辑的微信号可邀请加入。

知识星球正在建设中,欢迎可以写以下内容的成员联系我(微信号:FewDesire,ID:仿佛若有光)。添加前请备注“研究方向-地点-ID”
TVM入门到实践的教程
TensorRT入门到实践的教程
MNN入门到实践的教程
数字图像处理与Opencv入门到实践的教程(须包含数字图像处理理论和opencv实践)
OpenVINO入门到实践的教程
libtorch入门到实践的教程
Oneflow入门到实践的教程
Detectron入门到实践的教程
CUDA入门到实践的教程
caffe源码阅读
pytorch源码阅读
深度学习从入门到精通(从卷积神经网络开始讲起)
最新顶会的解读。例如最近的CVPR2022论文。
各个方向的系统性综述、主要模型发展演变、各个模型的创新思路和优缺点、代码解析等。(分成多篇文章来写,写得太简约不行,最好是一个重要模型一篇文章)
若自己有想写的且这上面没提到的,可以跟我联系。
Attention Mechanism in Computer Vision的更多相关文章
- (转) WTF is computer vision?
WTF is computer vision? Posted Nov 13, 2016 by Devin Coldewey, Contributor Next Story Someon ...
- Computer Vision Resources
Computer Vision Resources Softwares Topic Resources References Feature Extraction SIFT [1] [Demo pro ...
- Computer Vision Tutorials from Conferences (3) -- CVPR
CVPR 2013 (http://www.pamitc.org/cvpr13/tutorials.php) Foundations of Spatial SpectroscopyJames Cogg ...
- Computer Vision Tutorials from Conferences (2) -- ECCV
ECCV 2012 (http://eccv2012.unifi.it/program/tutorials/) Vision Applications on Mobile using OpenCVGa ...
- [C5W3] Sequence Models - Sequence models & Attention mechanism
第三周 序列模型和注意力机制(Sequence models & Attention mechanism) 基础模型(Basic Models) 在这一周,你将会学习 seq2seq(sequ ...
- paper 156:专家主页汇总-计算机视觉-computer vision
持续更新ing~ all *.files come from the author:http://www.cnblogs.com/findumars/p/5009003.html 1 牛人Homepa ...
- Gabor filter for image processing and computer vision
介绍 我们已经知道,傅里叶变换是一种信号处理中的有力工具,可以帮助我们将图像从空域转换到频域,并提取到空域上不易提取的特征.但是经过傅里叶变换后,图像在不同位置的频度特征往往混合在一起,但是Gabor ...
- Computer vision labs
积累记录一些视觉实验室,方便查找 1. 多伦多大学计算机科学系 2. 普林斯顿大学计算机视觉和机器人实验室 3. 牛津大学Torr Vision Group 4. 伯克利视觉和学习中心 Pro ...
- Computer Vision: OpenCV, Feature Tracking, and Beyond--From <<Make Things See>> by Greg
In the 1960s, the legendary Stanford artificial intelligence pioneer, John McCarthy, famously gave a ...
随机推荐
- 【ASP.NET Core】MVC模型绑定:非规范正文内容的处理
本篇老周就和老伙伴们分享一下,对于客户端提交的不规范 Body 如何做模型绑定.不必多说,这种情况下,只能自定义 ModelBinder 了.而且最佳方案是不要注册为全局 Binder--毕竟这种特殊 ...
- 什么是 Spring Cloud?
Spring cloud 流应用程序启动器是 于 Spring Boot 的 Spring 集成应用程序,提供与外部系统的集成.Spring cloud Task,一个生命周期短暂的微服务框架,用于快 ...
- Vue部署到云服务器时,访问Nginx代理出现We're sorry but books doesn't work properly without JavaScript enabled. Please enable it to continue.
出现这个的原因,我这边的是Nginx的问题,因为没有匹配到静态文件的原因 第一个location是始终将访问的url请求定向到 index.html这个主页面 第二个location块是将index. ...
- Python包装器
def func(): print("func body") def f1(arg): print("f1:",arg) def wrapper(b): pri ...
- Elasticsearch 中的节点(比如共 20 个),其中的 10 个 选了一个 master,另外 10 个选了另一个 master,怎么办?
1.当集群 master 候选数量不小于 3 个时,可以通过设置最少投票通过数量(discovery.zen.minimum_master_nodes)超过所有候选节点一半以上来解决脑裂问题: 2.当 ...
- mysql 的INNODB引擎和MYISAM引擎的区别、索引相关
两个引擎都是使用B+tree 数据结构作为索引 不同点: 1.INNODB的主键必须要有,同时也是聚集索引,INNODB的数据文件本身就是索引文件:而MYISAM则是存储了数据的地址 2.INNODB ...
- C语言之常量(知识点4)
一.常量(概念) ①用标识符代表常量 ②一般用大写字母表示 二.定义格式 #define 符号常量 常量 三.案例 #define PI 40; #define PRICE 30; 四.注意 ①其值在 ...
- 决策树算法2:(增益比率C4.5)
最重要的是第一个 改进1:信息增益率代替信息增益来选择属性 改进2:连续属性与分裂点 计算的是以候选点(划分点)划分的划分点的条件信息熵 改进三:缺失值处理 众数:概率值-缺失值将缺失值当作单独分类, ...
- 顺利通过EMC实验(12)
- Clickhouse-alter 对副本表修改表结构报元数据错误
[应用场景] 对分片副本表的列进行 alter 操作 [问题复现] [解决办法] 检查该分片所有副本表的表结构和 zk 上存储的 column 信息保持一致,检查本地的表结构 sql 文件 /data ...