转载和参考以下几个链接:https://www.cnblogs.com/itmorn/p/11177439.html;

https://blog.csdn.net/jack__linux/article/details/91357456?utm_medium=distribute.pc_aggpage_search_result.none-task-blog-2~aggregatepage~first_rank_v2~rank_aggregation-2-91357456.pc_agg_rank_aggregation&utm_term=same%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C&spm=1000.2123.3001.4430

一维卷积通常有三种类型:full卷积、same卷积和valid卷积,下面以一个长度为5的一维张量I和长度为3的一维张量K(卷积核)为例,介绍这三种卷积的计算过程

一维FULL卷积

Full卷积的计算过程是:K沿着I顺序移动,每移动到一个固定位置,对应位置的值相乘再求和,计算过程如下:

将得到的值依次存入一维张量Cfull,该张量就是I和卷积核K的full卷积结果,其中K卷积核或者滤波器或者卷积掩码,卷积符号用符号★表示,记Cfull=I★K

一维Same卷积

卷积核K都有一个锚点,然后将锚点顺序移动到张量I的每一个位置处,对应位置相乘再求和,计算过程如下:

假设卷积核的长度为FL,如果FL为奇数,锚点位置在(FL-1)/2处;如果FL为偶数,锚点位置在(FL-2)/2处。

一维Valid卷积  

从full卷积的计算过程可知,如果K靠近I,就会有部分延伸到I之外,valid卷积只考虑I能完全覆盖K的情况,即K在I的内部移动的情况,计算过程如下:

三种卷积类型的关系

具备深度的一维卷积

比如x是一个长度为3,深度为3的张量,其same卷积过程如下,卷积核K的锚点在张量x范围内依次移动,输入张量的深度和卷积核的深度是相等的。

具备深度的张量与多个卷积核的卷积

上面介绍了一个张量和一个卷积核进行卷积。他们的深度相等才能进行卷积,下面介绍一个张量与多个卷积核的卷积。同一个张量与多个卷积核的卷积本质上是该张量分别与每一个卷积核卷积,然后将每一个卷积结果在深度方向上连接起来。

举例:以长度为3、深度为3的输入张量与2个长度为2、深度为3的卷积核卷积为例,过程如下:

参考资料

《图解深度学习与神经网络:从张量到TensorFlow实现》_张平

 一下参考:https://blog.csdn.net/leviopku/article/details/80327478

本文清晰展示三种模式的不同之处,其实这三种不同模式是对卷积核移动范围的不同限制。

设 image的大小是7x7,filter的大小是3x3

1,full mode

橙色部分为image, 蓝色部分为filter。full模式的意思是,从filter和image刚相交开始做卷积,白色部分为填0。filter的运动范围如图所示。

2,same mode

当filter的中心(K)与image的边角重合时,开始做卷积运算,可见filter的运动范围比full模式小了一圈。注意:这里的same还有一个意思,卷积之后输出的feature map尺寸保持不变(相对于输入图片)。当然,same模式不代表完全输入输出尺寸一样,也跟卷积核的步长有关系。same模式也是最常见的模式,因为这种模式可以在前向传播的过程中让特征图的大小保持不变,调参师不需要精准计算其尺寸变化(因为尺寸根本就没变化)。

3.valid

当filter全部在image里面的时候,进行卷积运算,可见filter的移动范围较same更小了。

lenet-5可以参考这个链接讲解,链接内有讲的不太好,甚至不太对的地方,注意甄别:

https://max.book118.com/html/2016/1215/72627902.shtm

同时参考:深度学习与目标检测 第三章部分。杜鹏等编著。isbn:9787121367854

Full卷积、Same卷积、Valid卷积、带深度的一维卷积的更多相关文章

  1. 深度学习面试题09:一维卷积(Full卷积、Same卷积、Valid卷积、带深度的一维卷积)

    目录 一维Full卷积 一维Same卷积 一维Valid卷积 三种卷积类型的关系 具备深度的一维卷积 具备深度的张量与多个卷积核的卷积 参考资料 一维卷积通常有三种类型:full卷积.same卷积和v ...

  2. 深度学习面试题10:二维卷积(Full卷积、Same卷积、Valid卷积、带深度的二维卷积)

    目录 二维Full卷积 二维Same卷积 二维Valid卷积 三种卷积类型的关系 具备深度的二维卷积 具备深度的张量与多个卷积核的卷积 参考资料 二维卷积的原理和一维卷积类似,也有full卷积.sam ...

  3. 深度学习之卷积神经网络CNN

    转自:https://blog.csdn.net/cxmscb/article/details/71023576 一.CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连 ...

  4. 深度学习之卷积神经网络CNN及tensorflow代码实现示例

    深度学习之卷积神经网络CNN及tensorflow代码实现示例 2017年05月01日 13:28:21 cxmscb 阅读数 151413更多 分类专栏: 机器学习 深度学习 机器学习   版权声明 ...

  5. 深度学习面试题24:在每个深度上分别卷积(depthwise卷积)

    目录 举例 单个张量与多个卷积核在深度上分别卷积 参考资料 举例 如下张量x和卷积核K进行depthwise_conv2d卷积 结果为: depthwise_conv2d和conv2d的不同之处在于c ...

  6. 深度学习之卷积神经网络(CNN)

    卷积神经网络(CNN)因为在图像识别任务中大放异彩,而广为人知,近几年卷积神经网络在文本处理中也有了比较好的应用.我用TextCnn来做文本分类的任务,相比TextRnn,训练速度要快非常多,准确性也 ...

  7. 深度学习之卷积神经网络(CNN)的应用-验证码的生成与识别

    验证码的生成与识别 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10755361.html 目录 1.验证码的制 ...

  8. 深度学习之卷积神经网络(CNN)详解与代码实现(一)

    卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目 ...

  9. 深度学习FPGA实现基础知识10(Deep Learning(深度学习)卷积神经网络(Convolutional Neural Network,CNN))

    需求说明:深度学习FPGA实现知识储备 来自:http://blog.csdn.net/stdcoutzyx/article/details/41596663 说明:图文并茂,言简意赅. 自今年七月份 ...

随机推荐

  1. Exchange批量删除邮件

    在实际工作中经常遇到以下问题:邮件发送给错误的收件人,简而言之就是邮件发错了,如果遇到群发更麻烦.Exchange中提供了批量删除邮件功能,当用户发现发送错误后,管理员可以检索并删除指定的邮件. 案例 ...

  2. Python入门-安装Python开发环境

    1.安装开发环境 #方法一:直接安装anaconda,解释器和环境,一个软件就可以包括,简单方便 参考地址:https://www.cnblogs.com/sui776265233/p/1145300 ...

  3. Linux---必备命令(2)

    进程相关命令 # 查看系统所有的进程 ps -ef ps -ef | grep vim # 过滤出vim有关的进程 ps -ef | grep vim # 过滤出22端口的信息 ps -tunlp | ...

  4. re模块补充与其他模块介绍

    注:昨日写了re单个模块几个重要的点需要补充 一.re模块补充 1.findall独有的优先级别展示 res = re.findall('abc', 'abcabcabcabc') print(res ...

  5. 汇编语言实验1—Debug基础操作

    1.使用Debug,将下面的程序段写入内存,逐条执行,观察每条指令执行后CPU中相关寄存器中内容的变化. 记录1:最后一条指令执行完BX=(4026)H,AL=(66)H,检验结果. 两种写入:e命令 ...

  6. Hyperledger Fabric节点的动态添加和删除

    前言 在Hyperledger Fabric组织的动态添加和删除中,我们已经完成了在运行着的网络中动态添加和删除组织.本文将在其基础上,详细介绍了如何在 soft 组织上添加新的 peer2 节点,并 ...

  7. 如何在Web前端实现CAD图文字全文搜索功能之技术分享

    现状 在CAD看图过程中我们经常会需要用到查找文字的功能,在AutoCAD软件查找一个文字时,可以通过打开左下角输入命令find,输入查找的文字,然后设置查找范围,就可以搜索到需要查询的文字.但在We ...

  8. synchronized锁及其锁升级

    点赞再看,养成习惯,微信搜索「小大白日志」关注这个搬砖人. 文章不定期同步公众号,还有各种一线大厂面试原题.我的学习系列笔记. 多线程加锁有两种方式 利用Sychronized关键字 利用Lock接口 ...

  9. 4.25JMster环境搭建、webxml及测试平台练习

    1.Java环境搭建 右击电脑属性--高级设置--环境变量--系统变量--新建(输入JAVA_HOME.C:\Program Files\Java\jdk1.8.0_91---CLASSPATH..; ...

  10. ubuntu 16.04,ros kinetic 使用husy_gazebo

    我当前使用的是ubuntu 16.04,ros kinetic ,Gazebo版本为7.0.protoc需要确保版本为2.6.1,而我当前的为3.4.0,因此需要将系统中的protoc替换为2.6.1 ...