基于OpenCV实现图片及视频中选定区域颜色识别

近期,需要实现检测摄像头中指定坐标区域内的主体颜色,通过查阅大量相关的内容,最终实现代码及效果如下,具体的实现步骤在代码中都详细注释,代码还可以进一步优化,但提升有限。

主要实现过程:按不同颜色的取值范围,对图像进行循环遍历,转换为灰度图,将本次遍历的颜色像素转换为白色,对白色部分进行膨胀处理,使其更加连续,计算白色部分外轮廓包围的面积累加求和,比较每种颜色围起来面积,保存最大值及其颜色,所有颜色遍历完后,返回最大值对应的颜色,显示在图像上

如果有类似的颜色识别的任务,可参考以下代码修改后实现具体需求

colorList.py

import numpy as np
import collections # 将rgb图像转换为hsv图像后,确定不同颜色的取值范围
def getColorList():
dict = collections.defaultdict(list) # black
lower_black = np.array([0, 0, 0])
upper_black = np.array([180, 255, 46])
color_list_black = []
color_list_black.append(lower_black)
color_list_black.append(upper_black)
dict['black'] = color_list_black # gray
lower_gray = np.array([0, 0, 46])
upper_gray = np.array([180, 43, 220])
color_list_gray= []
color_list_gray.append(lower_gray)
color_list_gray.append(upper_gray)
dict['gray'] = color_list_gray # white
lower_white = np.array([0, 0, 221])
upper_white = np.array([180, 30, 255])
color_list_white = []
color_list_white.append(lower_white)
color_list_white.append(upper_white)
dict['white'] = color_list_white # red
lower_red = np.array([156, 43, 46])
upper_red = np.array([180, 255, 255])
color_list_red = []
color_list_red.append(lower_red)
color_list_red.append(upper_red)
dict['red'] = color_list_red # red2
lower_red = np.array([0, 43, 46])
upper_red = np.array([10, 255, 255])
color_list_red2 = []
color_list_red2.append(lower_red)
color_list_red2.append(upper_red)
dict['red2'] = color_list_red2 # orange
lower_orange = np.array([11, 43, 46])
upper_orange = np.array([25, 255, 255])
color_list_orange = []
color_list_orange.append(lower_orange)
color_list_orange.append(upper_orange)
dict['orange'] = color_list_orange # yellow
lower_yellow = np.array([26, 43, 46])
upper_yellow = np.array([34, 255, 255])
color_list_yellow = []
color_list_yellow.append(lower_yellow)
color_list_yellow.append(upper_yellow)
dict['yellow'] = color_list_yellow # green
lower_green = np.array([35, 43, 46])
upper_green = np.array([77, 255, 255])
color_list_green = []
color_list_green.append(lower_green)
color_list_green.append(upper_green)
dict['green'] = color_list_green # cyan
lower_cyan = np.array([78, 43, 46])
upper_cyan = np.array([99, 255, 255])
color_list_cyan = []
color_list_cyan.append(lower_cyan)
color_list_cyan.append(upper_cyan)
dict['cyan'] = color_list_cyan # blue
lower_blue = np.array([100, 43, 46])
upper_blue = np.array([124, 255, 255])
color_list_blue = []
color_list_blue.append(lower_blue)
color_list_blue.append(upper_blue)
dict['blue'] = color_list_blue # purple
lower_purple = np.array([125, 43, 46])
upper_purple = np.array([155, 255, 255])
color_list_purple = []
color_list_purple.append(lower_purple)
color_list_purple.append(upper_purple)
dict['purple'] = color_list_purple return dict if __name__ == '__main__':
color_dict = getColorList()
print(color_dict) num = len(color_dict)
print('num=', num) for d in color_dict:
print('key=', d)
print('value=', color_dict[d][1])

image_color_realize.py

import cv2
import colorList # 实现对图片中目标区域颜色的识别
def get_color(frame):
print('go in get_color')
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
maxsum = 0
color = None
color_dict = colorList.getColorList() # count = 0 for d in color_dict:
mask = cv2.inRange(hsv, color_dict[d][0], color_dict[d][1]) # 在后两个参数范围内的值变成255
binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1] # 在灰度图片中,像素值大于127的都变成255,[1]表示调用图像,也就是该函数第二个返回值 # cv2.imshow("0",binary)
# cv2.waitKey(0)
# count+=1 binary = cv2.dilate(binary, None, iterations=2) # 使用默认内核进行膨胀操作,操作两次,使缝隙变小,图像更连续
cnts = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2] # 获取该函数倒数第二个返回值轮廓
sum = 0
for c in cnts:
sum += cv2.contourArea(c) # 获取该颜色所有轮廓围成的面积的和
# print("%s , %d" %(d, sum ))
if sum > maxsum:
maxsum = sum
color = d
if color == 'red2':
color = 'red'
elif color == 'orange':
color = 'yellow'
elif color == 'purple' or color == 'blue' or color == 'cyan' or color == 'white' or color == 'green':
color = 'normal'
return color if __name__ == '__main__':
filename = "C:/Users/admin/Desktop/water_samples/live01.jpg"
frame = cv2.imread(filename)
# frame = frame[180:280, 180:380] # [y:y+h, x:x+w] 注意x,y顺序
color = get_color(frame) # 绘制文本
cv2.putText(img=frame,text=color,org=(20,50),fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=1.0,color=(0,255,0),thickness=2) # cv2.namedWindow('frame',cv2.WINDOW_NORMAL) # 设置显示窗口可调节
cv2.imshow('frame',frame)
cv2.waitKey(0)

video_color_realize.py

import cv2
import xf_color # 对视频或摄像头获取的影像目标区域颜色进行识别 cap = cv2.VideoCapture("C:/Users/admin/Desktop/water_samples/01.mp4")
# cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1100) # 这里窗口大小调节只对摄像头有效
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 750) while cap.isOpened():
ret, frame0 = cap.read()
# 对图像帧进行翻转(因为opencv图像和我们正常是反着的) 视频是正常的,摄像头是反转的
# frame0 = cv2.flip(src=frame0, flipCode=2) # frame = frame[180:280, 180:380] # [y:y+h, x:x+w]
# frame = frame0[200:400, 100:300] # 设置检测颜色的区域,四个顶点坐标
frame = frame0 # frame=cv2.resize(src=frame,dsize=(750,600))
hsv_frame = cv2.cvtColor(src=frame, code=cv2.COLOR_BGR2HSV)
# 获取读取的帧的高宽
height, width, channel = frame.shape
color = xf_color.get_color(hsv_frame)
# 绘制文本
cv2.putText(img=frame0, text=color, org=(20, 50), fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=1.0, color=(0, 255, 0), thickness=2)
cv2.imshow('frame', frame0)
key = cv2.waitKey(1)
if key == 27:
break cap.release()
cv2.destroyAllWindows() if __name__ == '__main__':
print('Pycharm')

效果如下:

示例图片1

示例图片2

示例图片3

基于OpenCV实现对图片及视频中感兴趣区域颜色识别的更多相关文章

  1. opencv探索之路(十二):感兴趣区域ROI和logo添加技术

    在图像处理领域,有一个非常重要的名词ROI. 什么是ROI? 它的英文全称是Region Of Interest,对应的中文解释就是感兴趣区域. 感兴趣区域,就是我们从图像中选择一个图像区域,这个区域 ...

  2. opencv——感兴趣区域(ROI)的分析和选取[详细总结]

    引言 在利用OpenCV对图像进行处理时,通常会遇到一个情况,就是只需要对部分感兴趣区域进行处理.因此,如何选取感兴趣区域呢?(其实就是"抠图"). 在学习opencv的掩码运算后 ...

  3. 基于opencv在摄像头ubuntu根据视频获取

     基于opencv在摄像头ubuntu根据视频获取 1  工具 原料 平台 :UBUNTU12.04 安装库  Opencv-2.3 2  安装编译执行步骤 安装编译opencv-2.3  參考h ...

  4. 提取出图像中感兴趣的部分,cvSetImageRoi,Rect

    在做人脸检测的时候,需要从摄像头拍摄视频中把检测到的人脸区域提取出来,网上找了很多博客,发现多数都是在用cvSetImageRoi函数,该函数声明如下:void cvSetImageROI(IplIm ...

  5. Web网页中动态数据区域的识别与抽取 Dynamical Data Regions Identification and Extraction in Web Pages

    Web网页中动态数据区域的识别与抽取 Dynamical Data Regions Identification and Extraction in Web Pages Web网页中动态数据区域的识别 ...

  6. opencv —— copyTo 设置与操作感兴趣区域(ROI)

    感兴趣区域:ROI 对感兴趣区域进行的一系列操作,相当于直接在原图相应部分进行操作. Mat imageROI = srcImage(Rect(0,0,dstImage.cols, dstImage. ...

  7. Python+Opencv实现把图片转为视频

    1. 安装Opencv包 在Python命令行输入如下命令(如果你使用的Anaconda,直接进入Anaconda Prompt键入命令即可.如果你不知道Anaconda是什么,可以参考王树义老师的文 ...

  8. [zt] ROI (Region of Interest) 感兴趣区域 OpenCV

    在以前介绍IplImage结构的时候,有一个重要的参数——ROI.ROI全称是”Region Of Interest”,即感兴趣的区域.实际上,它是IPL/IPP(这两个是Inter的库)结构IplR ...

  9. 机器学习进阶-目标追踪-SSD多进程执行 1.cv2.dnn.readnetFromCaffe(用于读取已经训练好的caffe模型) 2.delib.correlation_tracker(生成追踪器) 5.cv2.writer(将图片写入视频中) 6.cv2.dnn.blobFromImage(图片归一化) 10.multiprocessing.process(生成进程)

    1. cv2.dnn.readNetFromCaffe(prototxt, model)  用于进行SSD网络的caffe框架的加载 参数说明:prototxt表示caffe网络的结构文本,model ...

随机推荐

  1. 【Java分享客栈】超简洁SpringBoot使用AOP统一日志管理-纯干货干到便秘

    前言 请问今天您便秘了吗?程序员坐久了真的会便秘哦,如果偶然点进了这篇小干货,就麻烦您喝杯水然后去趟厕所一边用左手托起对准嘘嘘,一边用右手滑动手机看完本篇吧. 实现 本篇AOP统一日志管理写法来源于国 ...

  2. salesforce零基础学习(一百一十三)Trigger中获取IP地址的过程

    本篇参考: https://developer.salesforce.com/docs/atlas.en-us.228.0.apexcode.meta/apexcode/apex_class_Auth ...

  3. Nvidia Triton使用教程:从青铜到王者

    1 相关预备知识 模型:包含了大量参数的一个网络(参数+结构),体积10MB-10GB不等 模型格式:相同的模型可以有不同的存储格式(可类比音视频文件),目前主流有torch.tf.onnx和trt, ...

  4. JSON数据传输大法第一式——用OADate处理日期格式

    JSON作为一种轻量级的数据交换格式,通常采用完全独立于编程语言的文本格式来存储和表示数据.它的层次结构简洁清晰,易于人们的阅读和编写,此外机器编写和生成也会变得容易,可以有效地提升网络传输效率,这些 ...

  5. 141. Linked List Cycle - LeetCode

    Question 141. Linked List Cycle Solution 题目大意:给一个链表,判断是否存在循环,最好不要使用额外空间 思路:定义一个假节点fakeNext,遍历这个链表,判断 ...

  6. 用python解决打标签时将xml文件的标签名打错

    用python解决打标签时将xml文件的标签名打错 问题描述:再进行达标签时将magnetic_tile的标签名错误的打成了magnetic_title,又不想一张一张的修改 出现问题的xml文件 & ...

  7. 论文阅读 Dynamic Network Embedding by Modeling Triadic Closure Process

    3 Dynamic Network Embedding by Modeling Triadic Closure Process link:https://scholar.google.com.sg/s ...

  8. 关于p命名空间和c命名空间 外加一个context

    P命名空间注入 : 需要在头文件中加入约束文件 导入约束 : xmlns:p="http://www.springframework.org/schema/p" 如 xmlns=& ...

  9. Kubernetes Job Controller 原理和源码分析(三)

    概述Job controller 的启动processNextWorkItem()核心调谐逻辑入口 - syncJob()Pod 数量管理 - manageJob()小结 概述 源码版本:kubern ...

  10. CVPR2022 | 重新审视池化:你的感受野不是最理想的

    前言 本文提出了一种简单而有效的动态优化池操作( Dynamically Optimized Pooling operation),称为DynOPool,它通过学习每一层感受野的最佳大小和形状来优化特 ...