基于OpenCV实现图片及视频中选定区域颜色识别

近期,需要实现检测摄像头中指定坐标区域内的主体颜色,通过查阅大量相关的内容,最终实现代码及效果如下,具体的实现步骤在代码中都详细注释,代码还可以进一步优化,但提升有限。

主要实现过程:按不同颜色的取值范围,对图像进行循环遍历,转换为灰度图,将本次遍历的颜色像素转换为白色,对白色部分进行膨胀处理,使其更加连续,计算白色部分外轮廓包围的面积累加求和,比较每种颜色围起来面积,保存最大值及其颜色,所有颜色遍历完后,返回最大值对应的颜色,显示在图像上

如果有类似的颜色识别的任务,可参考以下代码修改后实现具体需求

colorList.py

import numpy as np
import collections # 将rgb图像转换为hsv图像后,确定不同颜色的取值范围
def getColorList():
dict = collections.defaultdict(list) # black
lower_black = np.array([0, 0, 0])
upper_black = np.array([180, 255, 46])
color_list_black = []
color_list_black.append(lower_black)
color_list_black.append(upper_black)
dict['black'] = color_list_black # gray
lower_gray = np.array([0, 0, 46])
upper_gray = np.array([180, 43, 220])
color_list_gray= []
color_list_gray.append(lower_gray)
color_list_gray.append(upper_gray)
dict['gray'] = color_list_gray # white
lower_white = np.array([0, 0, 221])
upper_white = np.array([180, 30, 255])
color_list_white = []
color_list_white.append(lower_white)
color_list_white.append(upper_white)
dict['white'] = color_list_white # red
lower_red = np.array([156, 43, 46])
upper_red = np.array([180, 255, 255])
color_list_red = []
color_list_red.append(lower_red)
color_list_red.append(upper_red)
dict['red'] = color_list_red # red2
lower_red = np.array([0, 43, 46])
upper_red = np.array([10, 255, 255])
color_list_red2 = []
color_list_red2.append(lower_red)
color_list_red2.append(upper_red)
dict['red2'] = color_list_red2 # orange
lower_orange = np.array([11, 43, 46])
upper_orange = np.array([25, 255, 255])
color_list_orange = []
color_list_orange.append(lower_orange)
color_list_orange.append(upper_orange)
dict['orange'] = color_list_orange # yellow
lower_yellow = np.array([26, 43, 46])
upper_yellow = np.array([34, 255, 255])
color_list_yellow = []
color_list_yellow.append(lower_yellow)
color_list_yellow.append(upper_yellow)
dict['yellow'] = color_list_yellow # green
lower_green = np.array([35, 43, 46])
upper_green = np.array([77, 255, 255])
color_list_green = []
color_list_green.append(lower_green)
color_list_green.append(upper_green)
dict['green'] = color_list_green # cyan
lower_cyan = np.array([78, 43, 46])
upper_cyan = np.array([99, 255, 255])
color_list_cyan = []
color_list_cyan.append(lower_cyan)
color_list_cyan.append(upper_cyan)
dict['cyan'] = color_list_cyan # blue
lower_blue = np.array([100, 43, 46])
upper_blue = np.array([124, 255, 255])
color_list_blue = []
color_list_blue.append(lower_blue)
color_list_blue.append(upper_blue)
dict['blue'] = color_list_blue # purple
lower_purple = np.array([125, 43, 46])
upper_purple = np.array([155, 255, 255])
color_list_purple = []
color_list_purple.append(lower_purple)
color_list_purple.append(upper_purple)
dict['purple'] = color_list_purple return dict if __name__ == '__main__':
color_dict = getColorList()
print(color_dict) num = len(color_dict)
print('num=', num) for d in color_dict:
print('key=', d)
print('value=', color_dict[d][1])

image_color_realize.py

import cv2
import colorList # 实现对图片中目标区域颜色的识别
def get_color(frame):
print('go in get_color')
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
maxsum = 0
color = None
color_dict = colorList.getColorList() # count = 0 for d in color_dict:
mask = cv2.inRange(hsv, color_dict[d][0], color_dict[d][1]) # 在后两个参数范围内的值变成255
binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1] # 在灰度图片中,像素值大于127的都变成255,[1]表示调用图像,也就是该函数第二个返回值 # cv2.imshow("0",binary)
# cv2.waitKey(0)
# count+=1 binary = cv2.dilate(binary, None, iterations=2) # 使用默认内核进行膨胀操作,操作两次,使缝隙变小,图像更连续
cnts = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2] # 获取该函数倒数第二个返回值轮廓
sum = 0
for c in cnts:
sum += cv2.contourArea(c) # 获取该颜色所有轮廓围成的面积的和
# print("%s , %d" %(d, sum ))
if sum > maxsum:
maxsum = sum
color = d
if color == 'red2':
color = 'red'
elif color == 'orange':
color = 'yellow'
elif color == 'purple' or color == 'blue' or color == 'cyan' or color == 'white' or color == 'green':
color = 'normal'
return color if __name__ == '__main__':
filename = "C:/Users/admin/Desktop/water_samples/live01.jpg"
frame = cv2.imread(filename)
# frame = frame[180:280, 180:380] # [y:y+h, x:x+w] 注意x,y顺序
color = get_color(frame) # 绘制文本
cv2.putText(img=frame,text=color,org=(20,50),fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=1.0,color=(0,255,0),thickness=2) # cv2.namedWindow('frame',cv2.WINDOW_NORMAL) # 设置显示窗口可调节
cv2.imshow('frame',frame)
cv2.waitKey(0)

video_color_realize.py

import cv2
import xf_color # 对视频或摄像头获取的影像目标区域颜色进行识别 cap = cv2.VideoCapture("C:/Users/admin/Desktop/water_samples/01.mp4")
# cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1100) # 这里窗口大小调节只对摄像头有效
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 750) while cap.isOpened():
ret, frame0 = cap.read()
# 对图像帧进行翻转(因为opencv图像和我们正常是反着的) 视频是正常的,摄像头是反转的
# frame0 = cv2.flip(src=frame0, flipCode=2) # frame = frame[180:280, 180:380] # [y:y+h, x:x+w]
# frame = frame0[200:400, 100:300] # 设置检测颜色的区域,四个顶点坐标
frame = frame0 # frame=cv2.resize(src=frame,dsize=(750,600))
hsv_frame = cv2.cvtColor(src=frame, code=cv2.COLOR_BGR2HSV)
# 获取读取的帧的高宽
height, width, channel = frame.shape
color = xf_color.get_color(hsv_frame)
# 绘制文本
cv2.putText(img=frame0, text=color, org=(20, 50), fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=1.0, color=(0, 255, 0), thickness=2)
cv2.imshow('frame', frame0)
key = cv2.waitKey(1)
if key == 27:
break cap.release()
cv2.destroyAllWindows() if __name__ == '__main__':
print('Pycharm')

效果如下:

示例图片1

示例图片2

示例图片3

基于OpenCV实现对图片及视频中感兴趣区域颜色识别的更多相关文章

  1. opencv探索之路(十二):感兴趣区域ROI和logo添加技术

    在图像处理领域,有一个非常重要的名词ROI. 什么是ROI? 它的英文全称是Region Of Interest,对应的中文解释就是感兴趣区域. 感兴趣区域,就是我们从图像中选择一个图像区域,这个区域 ...

  2. opencv——感兴趣区域(ROI)的分析和选取[详细总结]

    引言 在利用OpenCV对图像进行处理时,通常会遇到一个情况,就是只需要对部分感兴趣区域进行处理.因此,如何选取感兴趣区域呢?(其实就是"抠图"). 在学习opencv的掩码运算后 ...

  3. 基于opencv在摄像头ubuntu根据视频获取

     基于opencv在摄像头ubuntu根据视频获取 1  工具 原料 平台 :UBUNTU12.04 安装库  Opencv-2.3 2  安装编译执行步骤 安装编译opencv-2.3  參考h ...

  4. 提取出图像中感兴趣的部分,cvSetImageRoi,Rect

    在做人脸检测的时候,需要从摄像头拍摄视频中把检测到的人脸区域提取出来,网上找了很多博客,发现多数都是在用cvSetImageRoi函数,该函数声明如下:void cvSetImageROI(IplIm ...

  5. Web网页中动态数据区域的识别与抽取 Dynamical Data Regions Identification and Extraction in Web Pages

    Web网页中动态数据区域的识别与抽取 Dynamical Data Regions Identification and Extraction in Web Pages Web网页中动态数据区域的识别 ...

  6. opencv —— copyTo 设置与操作感兴趣区域(ROI)

    感兴趣区域:ROI 对感兴趣区域进行的一系列操作,相当于直接在原图相应部分进行操作. Mat imageROI = srcImage(Rect(0,0,dstImage.cols, dstImage. ...

  7. Python+Opencv实现把图片转为视频

    1. 安装Opencv包 在Python命令行输入如下命令(如果你使用的Anaconda,直接进入Anaconda Prompt键入命令即可.如果你不知道Anaconda是什么,可以参考王树义老师的文 ...

  8. [zt] ROI (Region of Interest) 感兴趣区域 OpenCV

    在以前介绍IplImage结构的时候,有一个重要的参数——ROI.ROI全称是”Region Of Interest”,即感兴趣的区域.实际上,它是IPL/IPP(这两个是Inter的库)结构IplR ...

  9. 机器学习进阶-目标追踪-SSD多进程执行 1.cv2.dnn.readnetFromCaffe(用于读取已经训练好的caffe模型) 2.delib.correlation_tracker(生成追踪器) 5.cv2.writer(将图片写入视频中) 6.cv2.dnn.blobFromImage(图片归一化) 10.multiprocessing.process(生成进程)

    1. cv2.dnn.readNetFromCaffe(prototxt, model)  用于进行SSD网络的caffe框架的加载 参数说明:prototxt表示caffe网络的结构文本,model ...

随机推荐

  1. Django学习——Django测试环境搭建、单表查询关键字、神奇的双下划线查询(范围查询)、图书管理系统表设计、外键字段操作、跨表查询理论、基于对象的跨表查询、基于双下划线的跨表查询

    Django测试环境搭建 ps: 1.pycharm连接数据库都需要提前下载对应的驱动 2.自带的sqlite3对日期格式数据不敏感 如果后续业务需要使用日期辅助筛选数据那么不推荐使用sqlite3 ...

  2. Nginx中FastCGI参数的优化配置实例

    在配置完成Nginx+FastCGI之后,为了保证Nginx下PHP环境的高速稳定运行,需要添加一些FastCGI优化指令.下面给出一个优化实例,将下面代码添加到Nginx主配置文件中的HTTP层级. ...

  3. Flutter和iOS混编详解

    前言 下面的内容是最近在使用Flutter和我们自己项目进行混编时候的一些总结以及自己踩的一些坑,处理完了就顺便把整个过程以及一些我们可能需要注意的点全都梳理出来,希望对有需要的小伙伴有点帮助,也方便 ...

  4. 多线程07:async、future、packaged_task、promise

    async.future.packaged_task.promise 本节内容需要包含头文件:#include <future> 一.std::async. std::future 创建后 ...

  5. WPF全局异常处理

    private void RegisterEvents() { //Task线程内未捕获异常处理事件 TaskScheduler.UnobservedTaskException += TaskSche ...

  6. 女朋友面试回来抱怨说会redis,面试官问了一堆redis

    Redis 优缺点及特点 什么是Redis?简述它的优缺点? Redis本质上是一个Key-Value类型的内存数据库,类似MemoryCache,整个数据库统统加载在内存当中进行操作,定期通过异步操 ...

  7. GIT速查手册

    一.GIT 1.1 简单配置 git是版本控制系统,与svn不同的是git是分布式,svn是集中式 配置文件位置 # 配置文件 .git/config 当前仓库的配置文件 ~/.gitconfig 全 ...

  8. 文件操作(Java)

    学习内容:文件操作        1.输入流:InputStream类是字节输入流的抽象类,常用的一些方法有: raed()方法:从输入流中读取数据的下一个字节 reset()方法:将输入指针返回到当 ...

  9. SmartIDE v0.1.17 已经发布 - 模版库远程模式和插件市场公测

    SmartIDE v0.1.17 已经发布,本次同步更新了CLI (Build 3332) 的稳定版通道和Server (Build 3333) 生产环境(内测中).请参考对应的 安装说明 获取最新版 ...

  10. SpringCloud 服务治理

    目录 1. Eureka 1.1 Eureka 介绍 1.2 Eureka 快速入门 父工程 Eureka Server(子工程) pom.xml 启动类 application.yml Eureka ...