一、背景

部门成立专项组,对数智平台和站务系统做性能优化,其中目标之一为降低服务端硬件成本,即在32G内存、CPU银牌的配置下,能支撑1万+发客量。要达到此目标,需通过压力测试并配合监控系统,以QPS、RPS、接口响应时间、接口成功率、SQL耗时、JVM运行情况、CPU和内存运行情况等数据指标为依据,找出系统中存在的性能瓶颈。

二、压测准备工作

1、测试服务器

1.1、准备一台测试服务器,配置如下:

硬件类型 硬件配置 备注
CPU i5-9400 CPU @ 2.90GHz @ 6 Core 6 Thread 普通办公电脑
内存 DIMM DDR4 @ 16G 2400Mhz + 8G 2400Mhz ---
硬盘 KINGSTON SA400M8 SSD 240G 性能优于机械硬盘50%
网卡 RTL8111/8168/8411 PCI Express Gigabit Ethernet Controller ---

1.2、准备千兆交换机

因压力机的网卡为100M,当请求超过100user后数据量超过压力机带宽限制,压测数据突发提升,因此更换千兆交换机。

2、CAT监控

为了在压测过程中,实时监控业务系统运行情况,采用了目前中心系统已成熟使用的cat监控,其原理是通过埋点数据上送,并生成各类可视化报表,可监控的指标包括JVM、接口、SQL、异常告警等。

cat官方地址:https://github.com/dianping/cat

三、压测关键过程

1、第一次压测情况

用户数 QPS 压测情况说明 出票量
10 33 CPU80%,tomcat-zw占用15%;影响正常业务 10分钟/3540张
20 27 CPU80%,tomcat-zw占用15%;影响正常业务 10分钟/4440张

CPU负载情况:

通过以上数据可以看出,在10个并发请求情况下,CPU基本打满,业务系统已无法正常运行。提升到20个并发请求后,QPS不增返降,说明系统已无法支撑更多请求。

2、数智平台性能排查及解决过程

2.1、接口缓存

  • 以上数据显示,站务系统tomcat-zw仅占用了15%的CPU,需要找到其他65%消耗在哪。
  • 通过top命令发现station-base占用CPU超过tomcat-zw,按照业务复杂度划分来看,及其不合理,于是需要找出station-base占用高的原因。
  • 首先,找到station-base的进程ID:ps -ef | grep station-base

  • 再查看进程ID找到占用高的线程ID:top -Hp 1061
  • 再根据线程ID找到具体堆栈信息

    线程ID转化为16进制(TID):printf "%x\n" TID;

    JVM堆栈中查找线程信息:jstack PID | grep TID -A100;
  • 发现较多线程在执行以下两个接口,但未做缓存:

    /base/openApi/line/getAllLineDownSiteBySiteNos

    /base/openApi/line/getStationLineByLineNo

2.2、网关优化

2.2.1、spring gateway向/tmp文件夹创建大量临时文件夹,导致/tmp目录卡死
  • 使用jstack命令查看吃cpu的线程运行情况如下图:

  • 登录服务器查看/tmp目录大小,发现存在大量临时文件,乃至ls /tmp 命令卡死

  • 解决措施:将spring-web 5.2.15升级到5.2.16
2.2.2、自定义过滤器代码本身问题排除
  • 因gateway需要对请求和响应进行参数重新包装,故需要自定义过滤器,分别是请求过滤器(ModifyRequestGatewayFilterFactory)和响应过滤器(ModifyResponseGatewayFilterFactory)进行拦截处理,为避免网关响应时间受自定义过滤器的影响,直接将过滤器取消,对spring cloud gateway原生代码进行请求压测,经实测后,性能并为明显提升,可以排除自定义过滤器的问题。
2.2.3、Reactor(netty)工作线程组及epoll请求处理线程配置

但从接口的平均响应时间来看,依然在500ms左右。于是通过资料查找,怀疑为netty问题,netty源码的配置为:

DEFAULT_IO_WORKER_COUNT:如果环境变量有设置reactor.ipc.netty.workerCount,则用该值;没有设置则取Math.max(Runtime.getRuntime().availableProcessors(), 4)))

DEFAULT_IO_SELECT_COUNT:如果环境变量有设置reactor.ipc.netty.selectCount,则用该值;没有设置则取-1,表示没有selector thread

默认配置下,通过artha可以看出Reactor-http-epoll处理线程如下图:

可以看出,netty框架默认情况下,按测试服务器配置,工作线程为6且未使用selector线程组。于是增加以下环境变量:

    @Bean
public ReactorResourceFactory reactorClientResourceFactory() {
// 配置线程组
System.setProperty("reactor.netty.ioSelectCount","1");
// 这里工作线程数为2-4倍都可以。看具体情况
int ioWorkerCount = Math.max(Runtime.getRuntime().availableProcessors()*3, 4));
System.setProperty("reactor.netty.ioWorkerCount",String.valueOf(ioWorkerCount);
return new ReactorResourceFactory();
}

再次通过arthas可以看出Reactor-http-epoll处理线程如下图:

配置完成后,再次压测,RPS达到3300,平均响应时间降低到150ms以内

2.2.4、logback同步写日志改为异步

通过cpu火焰图发现在处理大量请求时,自定义的sql打印插件频繁的输出sql语句,而且logback在默认情况下采用同步写日志,而同步阻塞写,会拖慢业务方法执行速度,下图是将logback改成异步的配置

2.2.5、网关优化总结

  • 1、自定义过滤器本身问题排除
  • 2、使用centos系统提供的一些硬件资源命令来分析高消耗cpu或者io线程,使用查此线程在jvm中的运行详情以此来寻找问题解决方向
  • 3、分析jvm中的线程来判断定位可能出问题的代码(比如2.2.1)
  • 4、通过关键信息寻找问题原因或解决方案(最好是来自官网或者github官方仓库的issues)
  • 5、透过现象看本质,通过各种辅助工具或命令来排查cpu和io高占用的线程,以此数据作为解决问题的基础支撑

3、站务系统性能排查及解决过程

3.1 全局filter校验token未做缓存

通过链路监控发现,zw-station-ticket模块在接收到购票请求到第一次执行SQL查询之间,有大约600ms损耗。通过查看代码发现,可能是因为全局token校验接口未做缓存导致。优化完成后查看监控数据,token校验耗时正常。

3.2 Transaction注解问题

再次压测,观测调用链路,仍然发现在进入购票接口后,有时间损耗,通过排查代码发现,在购票和锁票方法上面有@Transaction注解,时间损耗的可能原因是:

当 Spring 遇到该注解时,会自动从数据库连接池中获取 connection,并开启事务然后绑定到 ThreadLocal 上,对于@Transactional注解包裹的整个方法都是使用同一个connection连接 。如果我们出现了耗时的操作,比如第三方接口调用,业务逻辑复杂,大批量数据处理等就会导致我们我们占用这个connection的时间会很长,数据库连接一直被占用不释放。

因此去掉事务注解后,再次观测数据,空白时间损耗问题解决。

后续解决思路:对事务方法进行拆分,尽量让事务变小,变快,减小事务的颗粒度。否则,可能出现:

  • 数据库连接池被占满,应用无法获取连接资源;
  • 容易引发数据库死锁;
  • 数据库回滚时间长;
  • 在主从架构中会导致主从延时变大。

3.3 logback日志问题

通过以上方式优化完成后,发现tomcat-zw模块依然占用比较大的CPU,在150%-300%之间。于是,准备通过async-profiler工具,查看耗CPU的详细堆栈信息。

  • 第一步,下载async-profiler-2.8.3-linux-x64.tar.gz,并解压
  • 第二步,执行数据采集命令,生成CPU运行火焰图:./profiler.sh -d 60 -f ./nacos.html PID

通过火焰图发现,基本所有CPU都在执行logback日志打印。

于是,对logback配置文件进行优化:

  • 去掉控制台打印
  • 改为异步合并写日志

优化完成后再次压测,RPS由原23.7提高到222;平均响应时间由原1447ms降低为1082ms;

优化前:

优化后:

4、其他优化

  • 为减少CPU消耗,JVM垃圾收集器由CMS改为G1

CPU性能优化干货总结的更多相关文章

  1. [Unity优化] Unity CPU性能优化

    前段时间本人转战unity手游,由于作者(Chwen)之前参与端游开发,有些端游的经验可以直接移植到手游,比如项目框架架构.代码设计.部分性能分析,而对于移动终端而言,CPU.内存.显卡甚至电池等硬件 ...

  2. Linux性能优化从入门到实战:07 CPU篇:CPU性能优化方法

    性能优化方法论   动手优化性能之前,需要明确以下三个问题:   (1)如何评估性能优化的效果? 确定性能的量化指标.测试优化前的性能指标.测试优化后的性能指标.   量化指标的选择.至少要从应用程序 ...

  3. 【转载】PHP性能优化干货

    PHP优化对于PHP的优化主要是对php.ini中的相关主要参数进行合理调整和设置,以下我们就来看看php.ini中的一些对性能影响较大的参数应该如何设置. # vi /etc/php.ini (1) ...

  4. CPU性能优化

    原创转载请注明出处:https://www.cnblogs.com/agilestyle/p/11521331.html CPU性能指标 根据指标找工具 根据工具查指标 top.vmstat 和 pi ...

  5. 《Linux 性能优化实战—倪朋飞 》学习笔记 CPU 篇

    平均负载 指单位时间内,系统处于可运行状态和不可中断状态的平均进程数,即平均活跃进程数 可运行状态:正在使用CPU或者正在等待CPU 的进程,也就是我们常用 ps 命令看到的,处于 R 状态 (Run ...

  6. Linux性能优化实战CPU篇之总结(四)

    一.分析CPU瓶颈 1,性能指标 a>CPU使用率 CPU使用率描述了非空闲时间占总CPU时间的百分比,根据CPU上运行任务的不同可以分为:用户CPU.系统CPU.等待I/O CPU.软中断和硬 ...

  7. KVM性能优化学习笔记

    本学习笔记系列都是采用CentOS6.x操作系统,KVM虚拟机的管理也是采用virsh方式,网上的很多的文章都基于ubuntu高版本内核下,KVM的一些新的特性支持更好,本文只是记录了CentOS6. ...

  8. 揭秘重度MMORPG手游后台性能优化方案

    本文节选自<2018腾讯移动游戏技术评审标准与实践案例>手册,由腾讯互娱工程师王杰分享<仙剑奇侠传online>项目中游戏后台的优化经验,深度解析寻路算法.视野管理.内存优化. ...

  9. Linux性能优化实战学习笔记:第五十六讲

    一.上节回顾 上一节,我带你一起梳理了,性能问题分析的一般步骤.先带你简单回顾一下. 我们可以从系统资源瓶颈和应用程序瓶颈,这两个角度来分析性能问题的根源. 从系统资源瓶颈的角度来说,USE 法是最为 ...

随机推荐

  1. 省HVV初体验(edu)

    浙江省HVV初体验 此次参加的HVV是edu分会场,总的来说是对HVV有了一个初步的认识,了解实战和靶场练习之间存在的巨大鸿沟. 经历了这次HVV,对于渗透测试有了更深一步的理解.渗透测试的本质就是信 ...

  2. 6月6日,HTTP/3 正式发布了!

    经过了多年的努力,在 6 月 6 号,IETF (互联网工程任务小组) 正式发布了 HTTP/3 的 RFC, 这是超文本传输协议(HTTP)的第三个主要版本,完整的 RFC 超过了 20000 字, ...

  3. bare Git 仓库是什么?

    背景 今天,坐我旁边的同事问我一些关于服务器上命令的问题.其中有一个用了特殊参数的 git init 的命令,我也不认识,遂去 Google... bare Git 仓库 定义 A bare Git ...

  4. 2.1 动为进程,静为程序 -进程概论 -《zobolの操作系统学习札记》

    2.1 动为进程,静为程序 -进程概论 目录 2.1 动为进程,静为程序 -进程概论 问1:发明进程的原因? 问2:现在计算机中的进程的定义是什么? 问3:为什么进程跟处理器的联系更密切? 问4:进程 ...

  5. MAUI与Blazor共享一套UI,媲美Flutter,实现Windows、macOS、Android、iOS、Web通用UI

    1. 前言 距离上次发<MAUI初体验:爽>一文已经过去2个月了,本计划是下半年或者明年再研究MAUI的,现在计划提前啦,因为我觉得MAUI Blazor挺有意思的:在Android.iO ...

  6. Python实现12种概率分布(附代码)

    今天给大家带来的这篇文章是关于机器学习的,机器学习有其独特的数学基础,我们用微积分来处理变化无限小的函数,并计算它们的变化:我们使用线性代数来处理计算过程:我们还用概率论与统计学建模不确定性. 在这其 ...

  7. hs-black 杂题选讲

    [POI2011]OKR-Periodicity 考虑递归地构造,设 \(\text{solve(s)}\) 表示字典序最小的,\(\text{border}\) 集合和 \(S\) 的 \(\tex ...

  8. 【RocketMQ】消息的刷盘机制

    刷盘策略 CommitLog的asyncPutMessage方法中可以看到在写入消息之后,调用了submitFlushRequest方法执行刷盘策略: public class CommitLog { ...

  9. go 编程规范

    如果没有编程规范会有什么问题? 哪些地方可以需要指定规范? 非编码类规范:编码规范 非编码规范 开源规范 http://www.ruanyifeng.com/blog/2011/05/how_to_c ...

  10. PoweJob高级特性-MapReduce完整示例

    由于网上搜索 PowerJob MapReduce 都是设计原理,demo也展示个空壳子,没有演示Map到Reduce结果怎么传递,对于没有MR开发经验的人来说并没有什么帮助,所以这里写了一个有完整计 ...