「题解报告」Blocks
P3503 Blocks 题解
思路
首先我们可以发现,若 \(a_l\) ~ \(a_r\) 的平均值大于等于 \(k\) ,则这个区间一定可以转化为都大于等于 \(k\) 的。我们就把这个问题化简成了“求最长的平均值大于等于 \(k\) 的子序列”。
再去化简,可以发现,如果我们把序列中的每一项都减去 \(k\) ,再求前缀和 \(s\) ,若 \(s_i-s_j\ge 0\) ,则区间 \((j,i)\) 一定满足条件。
那么我们考虑如何求这种区间。
不难发现,若 \(i<j\) 且 \(s_i<s_j\) ,则选 \(i\) 当左端点比 \(j\) 更优,则选 \(j\) 当右端点比 \(i\) 更优。
那么我们去维护一个单调栈存可能最优的左端点,栈中的元素都满足:在栈中 \(j\) 在 \(i\) 之上且 \(s_i>s_j\) 。(这里自己好好思考一下)
根据我们维护的单调栈的性质,我们可以发现:
- 一个元素越靠栈顶,可以和它在一起的右端点越多,但产生的区间越短。
- 如果一个右端点与栈里的一个元素产生的区间合法,则该右端点与该元素之上的元素一定也能构成合法区间。
那么我们再从最右边开始枚举右端点,去找最大区间。如果一个右端点与栈顶的左端点可以构成合法区间那就更新答案,并把栈顶弹出(因为再靠左的右端点就算满足条件也没有这个长了),继续看浮出来的新栈顶是否合法。
记得判断 \(s_i\ge 0\) 的情况。
代码
#include <bits/stdc++.h>
#define _for(i,a,b) for(int i=a;i<=b;++i)
#define for_(i,a,b) for(int i=a;i>=b;--i)
#define ll long long
using namespace std;
const int N=1e5+10,inf=0x3f3f3f3f;
ll n,q,a[N],b[N],k,ans;
stack<ll>s1,s2;
int main(){
scanf("%lld%lld",&n,&q);
_for(i,1,n)scanf("%lld",&a[i]);
while(q--){
scanf("%lld",&k);
ans=0;
_for(i,1,n){
b[i]=b[i-1]+a[i]-k;
if(b[i]>=0)ans=max(ans,(ll)(i));
if(s1.empty()||b[i]<b[s1.top()])s1.push(i);
}for_(i,n,1){
while(!s1.empty()&&b[i]-b[s1.top()]>=0){
ans=max(ans,i-s1.top()),s1.pop();
}
}
printf("%lld\n",ans);
}
return 0;
}
「题解报告」Blocks的更多相关文章
- 「题解报告」 P3167 [CQOI2014]通配符匹配
「题解报告」 P3167 [CQOI2014]通配符匹配 思路 *和?显然无法直接匹配,但是可以发现「通配符个数不超过 \(10\) 」,那么我们可以考虑分段匹配. 我们首先把原字符串分成多个以一个通 ...
- 「题解报告」P4577 [FJOI2018]领导集团问题
题解 P4577 [FJOI2018]领导集团问题 题解区好像没有线段树上又套了二分的做法,于是就有了这片题解. 题目传送门 怀着必 WA 的决心交了两发,一不小心就过了. 题意 求一个树上最长不下降 ...
- 「题解报告」P2154 虔诚的墓主人
P2154 虔诚的墓主人 题解 原题传送门 题意 在 \(n\times m\) 一个方格上给你 \(w\) 个点,求方格里每个点正上下左右各选 \(k\) 个点的方案数. \(1 \le N, M ...
- 「题解报告」SP16185 Mining your own business
题解 SP16185 Mining your own business 原题传送门 题意 给你一个无向图,求至少安装多少个太平井,才能使不管那个点封闭,其他点都可以与有太平井的点联通. 题解 其他题解 ...
- 「题解报告」P3354
P3354 题解 题目传送门 一道很恶心的树形dp 但是我喜欢 题目大意: 一片海旁边有一条树状的河,入海口有一个大伐木场,每条河的分叉处都有村庄.建了伐木场的村庄可以直接处理木料,否则要往下游的伐木 ...
- 「题解报告」CF1067A Array Without Local Maximums
大佬们的题解都太深奥了,直接把转移方程放出来让其他大佬们感性理解,蒟蒻们很难理解,所以我就写了一篇让像我一样的蒟蒻能看懂的题解 原题传送门 动态规划三部曲:确定状态,转移方程,初始状态和答案. --神 ...
- 「题解报告」P7301 【[USACO21JAN] Spaced Out S】
原题传送门 神奇的5分算法:直接输出样例. 20分算法 直接把每个点是否有牛的状态DFS一遍同时判断是否合法,时间复杂度约为\(O(2^{n^2})\)(因为有判断合法的剪枝所以会比这个低).而在前四 ...
- 「GXOI / GZOI2019」简要题解
「GXOI / GZOI2019」简要题解 LOJ#3083. 「GXOI / GZOI2019」与或和 https://loj.ac/problem/3083 题意:求一个矩阵的所有子矩阵的与和 和 ...
- 【题解】#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT)
[题解]#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT) 之前做这道题不理解,有一点走火入魔了,甚至想要一本近世代数来看,然后通过人类智慧思考后发现, ...
随机推荐
- 开发工具-在线计算MD5
更新记录: 2022年6月8日 更新标题. 2022年6月1日 开始. 都记在这以后就不用到处找了. 在线计算MD5 https://www.sojson.com/md5/ http://www.ip ...
- MySql查询日周月
常用计算日期的函数 日 date(日期) = CURDATE() 自然周 YEARWEEK(date_format(日期,'%Y-%m-%d') , 1) = YEARWEEK(now() , 1) ...
- Linux 源码编译安装软件
程序包编译安装的步骤: 源代码-->预处理-->编译-->汇编-->链接-->执行 多文件:文件中的代码之间,很可能存在跨文件依赖关系 1.编译源码的项目工具 使用相关的 ...
- 论文解读(AGC)《Attributed Graph Clustering via Adaptive Graph Convolution》
论文信息 论文标题:Attributed Graph Clustering via Adaptive Graph Convolution论文作者:Xiaotong Zhang, Han Liu, Qi ...
- NC25025 [USACO 2007 Nov G]Sunscreen
NC25025 [USACO 2007 Nov G]Sunscreen 题目 题目描述 To avoid unsightly burns while tanning, each of the \(C\ ...
- vmstate 命令详解2022
vmstat 是一个查看虚拟内存(Virtual Memory)使用状况的工具,但是怎样通过 vmstat 来发现系统中的瓶颈呢? 1. 使用vmstat 使用前我们先看下命令介绍及参数定义 Usag ...
- git的基本操作命令和码云的注册使用
Git文件操作文件的四种状态版本控制就是对文件的版本控制,要对文件进行修改.提交等操作,首先要知道文件当前在什么状态,不然可能会提交了现在还不想提交的文件,或者要提交的文件没提交上. Untracke ...
- IO多路复用epoll
0 why: 问题来源 0.1 网络编程流程 //创建socket int s = socket(AF_INET, SOCK_STREAM, 0); //绑定IP地址和端口号port bind(s, ...
- Ubuntu安装python各版本
编译安装的话,之前遇到过很多小问题,感觉还是通过添加这个ppa方式装的比较稳,缺点是可能安装的比较慢,可配合proxychain4 sudo apt install software-properti ...
- java后端接受Vue传递的List
Failed to resolve argument 1 of type 'java.util.List' org.springframework.web.bind.MissingServletReq ...