内容概述:

  • 把方阵 A 的特征多项式 \(c(λ)=|λE-A|\) 展开成 \(c(λ)=\sum_ia_i\lambda^i\) 的形式,然后使用神乎其技的证明,得到 \(c(A)=O\),特征多项式是 A 的化零多项式。【Hamilton-Cayley 定理】
  • 定义 A 的最小多项式为 \(m(λ)=\Pi_i(λ-λ_i)^{c_i}\),即次数最低的、能使 m(A)=0 的多项式。显然,m(λ) 是 c(λ) 的因式。
  • 如果 m(λ) 里所有 \(c_i\) 都为零,则 A 可相似对角化。
  • 如果不都为零,那么对特征值 \(λ_i\),要在相似矩阵里放 \(c_i\) 个 Jordan 标准型。具体怎么放,要枚举所有可能 + 看 \(λ_iE-A\) 幂次的秩是否符合。

Jordan 标准型长这样:

Jordan 矩阵由 Jordan 块组成,Jordan 标准型就是与 A 相似的 Jordan 矩阵:

线性代数 | Jordan 标准型的笔记的更多相关文章

  1. 【线性代数】 06 - Jordan标准型

    现在就来研究将空间分割为不变子空间的方法,最困难的是我们还不知道从哪里着手.你可能想到从循环子空间出发,一块一块地进行分割,但这个方案的存在性和唯一性都不能解决.不变子空间分割不仅要求每个子空间\(V ...

  2. Jordan 标准型的推论

    将学习到什么 从 Jordan 标准型出发,能够获得非常有用的信息.   Jordan 矩阵的构造 Jordan 矩阵 \begin{align} J=\begin{bmatrix} J_{n_1}( ...

  3. Jordan 标准型定理

    将学习到什么 就算两个矩阵有相同的特征多项式,它们也有可能不相似,那么如何判断两个矩阵是相似的?答案是它们有一样的 Jordan 标准型.   Jordan 标准型定理 这节目的:证明每个复矩阵都与一 ...

  4. Jordan 标准型的实例

    将学习到什么 练习一下如何把一个矩阵化为 Jordan 标准型.   将矩阵化为 Jordan 标准型需要三步: 第一步 求出矩阵 \(A \in M_n\) 全部的特征值 \(\lambda_1,\ ...

  5. [转载] $\mathrm{Jordan}$标准型的介绍

    本文转载自陈洪葛的博客$,$ 而实际上来自xida博客朝花夕拾$,$ 可惜该博客已经失效 $\mathrm{Jordan}$ 标准形定理是线性代数中的基本定理$,$ 专门为它写一篇长文好像有点多余$: ...

  6. [Bilingual] Different proofs of Jordan cardinal form (Jordan标准型的几种证明)

  7. 实 Jordan 标准型和实 Weyr 标准型

    将学习到什么 本节讨论关于实矩阵的实形式的 Jordan 标准型,也讨论关于复矩阵的另外一种形式的 Jordan 标准型,因为它在与交换性有关的问题中很有用.   实 Jordan 标准型 假设 \( ...

  8. Jordan 块的几何

    设 $V$ 是复数域 $\mathbb{C}$ 上的 $n$ 维线性空间, $\varphi$ 是 $V$ 上的线性变换, $A\in M_n(\mathbb{C})$ 是 $\varphi$ 在某组 ...

  9. Jordan标准形

    一.引入 前面已经指出,一切n阶矩阵A可以分成许多相似类.今要在与A相似的全体矩阵中,找出一个较简单的矩阵来作为相似类的标准形.当然以对角矩阵作为标准形最好,可惜不是每一个矩阵都能与对角矩阵相似.因此 ...

随机推荐

  1. Windows环境下安装RabbitMQ

    本地安装RabbitMQ安装注意事项: Erlang与RabbitMQ,安装路径都应不含空格符. Erlang使用了环境变量HOMEDRIVE与HOMEPATH来访问配置文件.erlang.cooki ...

  2. Cent OS8.0 及以上版本安装禅道教程

    Cent OS8系统下安装禅道需要搭建环境如下:httpd ,mariadb , php7.2 再运行禅道 一,环境说明: 运行环境推荐使用 Apache + PHP(7.0/7.1/7.2版本) + ...

  3. 架构师必备:系统容量现状checklist

    正如飞机在起飞前,机长.副机长要过一遍checklist检查,确认没问题了才能起飞.楼主也整理了一个系统容量现状checklist,方便对照检查.本文搭配架构师必备:如何做容量预估和调优,食用更佳. ...

  4. css设置元素背景透明度的2种方式

    更新记录 本文迁移自Panda666原博客,原发布时间:2021年7月9日. 设置元素的背景的透明度可以使用2种方式:方式1:opacity属性.方式2:使用rgba值.两种方式有一点差异,opaci ...

  5. 2.shell脚本99乘法表

    shell脚本99乘法表 [root@localhost data]# vim cf.sh

  6. Python Socket Sever

    1. Server code 1 # !/usr/bin/env python 2 # coding:utf-8 3 import multiprocessing 4 import socket 5 ...

  7. bat-设置oracle服务

    1.停止oracle所有服务 并将服务设置为手动启动 @echo off echo oracle服务--------停止 net stop OracleVssWriterORCL net stop O ...

  8. 『现学现忘』Docker基础 — 42、补充:save和load命令说明

    目录 1.save命令 2.load命令 1.save命令 将指定的一个或多个镜像保存成.tar格式的文件,进行打包归档. 查看docker save帮助命令,如下: [root@192 ~]# do ...

  9. java中的内存划分和一个数组的内存图

    内存概述 内存是计算机中的重要原件,临时存储区域,作用是运行程序.我们编写的程序是存放在硬盘中的,在硬盘中的程序是不会运行的,必须放进内存中才能运行,运行完毕后会清空内存   Java虚拟机要运行程序 ...

  10. Cisco Packet Tracer Student(思科网络模拟器)模拟搭建VLAN网络

    一.VLAN简介 VLAN指在同一个物理网段内,通过逻辑手段,将其划分出多个虚拟的局域网,每个虚拟局域网都具备和真实局域网一样的功能.VLAN不受物理位置限制,可以灵活划分,同一个VLAN内的主机之间 ...