刚开始学习tf时,我们从简单的地方开始。卷积神经网络(CNN)是由简单的神经网络(NN)发展而来的,因此,我们的第一个例子,就从神经网络开始。

神经网络没有卷积功能,只有简单的三层:输入层,隐藏层和输出层。

数据从输入层输入,在隐藏层进行加权变换,最后在输出层进行输出。输出的时候,我们可以使用softmax回归,输出属于每个类别的概率值。借用极客学院的图表示如下:

其中,x1,x2,x3为输入数据,经过运算后,得到三个数据属于某个类别的概率值y1,y2,y3. 用简单的公式表示如下:

在训练过程中,我们将真实的结果和预测的结果相比(交叉熵比较法),会得到一个残差。公式如下:

y 是我们预测的概率值, y' 是实际的值。这个残差越小越好,我们可以使用梯度下降法,不停地改变W和b的值,使得残差逐渐变小,最后收敛到最小值。这样训练就完成了,我们就得到了一个模型(W和b的最优化值)。

完整代码如下:

import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
x = tf.placeholder(tf.float32, [None, 784])
y_actual = tf.placeholder(tf.float32, shape=[None, 10])
W = tf.Variable(tf.zeros([784,10])) #初始化权值W
b = tf.Variable(tf.zeros([10])) #初始化偏置项b
y_predict = tf.nn.softmax(tf.matmul(x,W) + b) #加权变换并进行softmax回归,得到预测概率
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_actual*tf.log(y_predict),reduction_indies=1)) #求交叉熵
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) #用梯度下降法使得残差最小 correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1)) #在测试阶段,测试准确度计算
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) #多个批次的准确度均值 init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
for i in range(1000): #训练阶段,迭代1000次
batch_xs, batch_ys = mnist.train.next_batch(100) #按批次训练,每批100行数据
sess.run(train_step, feed_dict={x: batch_xs, y_actual: batch_ys}) #执行训练
if(i%100==0): #每训练100次,测试一次
print "accuracy:",sess.run(accuracy, feed_dict={x: mnist.test.images, y_actual: mnist.test.labels})

每训练100次,测试一次,随着训练次数的增加,测试精度也在增加。训练结束后,1W行数据测试的平均精度为91%左右,不是太高,肯定没有CNN高。

tensorflow学习笔记四:mnist实例--用简单的神经网络来训练和测试的更多相关文章

  1. ensorflow学习笔记四:mnist实例--用简单的神经网络来训练和测试

    http://www.cnblogs.com/denny402/p/5852983.html ensorflow学习笔记四:mnist实例--用简单的神经网络来训练和测试   刚开始学习tf时,我们从 ...

  2. 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识

    深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...

  3. 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别

    深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...

  4. tensorflow学习笔记————分类MNIST数据集

    在使用tensorflow分类MNIST数据集中,最容易遇到的问题是下载MNIST样本的问题. 一般是通过使用tensorflow内置的函数进行下载和加载, from tensorflow.examp ...

  5. tensorflow学习笔记三:实例数据下载与读取

    一.mnist数据 深度学习的入门实例,一般就是mnist手写数字分类识别,因此我们应该先下载这个数据集. tensorflow提供一个input_data.py文件,专门用于下载mnist数据,我们 ...

  6. TensorFlow学习笔记(MNIST报错修正 适用Tensorflow1.3)

    在Tensorflow实战Google框架下的深度学习这本书的MNIST的图像识别例子中,每次都要报错   错误如下: Only call `sparse_softmax_cross_entropy_ ...

  7. tensorflow学习笔记(10) mnist格式数据转换为TFrecords

    本程序 (1)mnist的图片转换成TFrecords格式 (2) 读取TFrecords格式 # coding:utf-8 # 将MNIST输入数据转化为TFRecord的格式 # http://b ...

  8. tensorflow学习笔记四----------构造线性回归模型

    首先通过构造随机数,模拟数据. import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 随机生成100 ...

  9. tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)

    续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...

随机推荐

  1. Nginx主配置参数详解,Nginx配置网站

    1.Niginx主配置文件参数详解 a.上面博客说了在Linux中安装nginx.博文地址为:http://www.cnblogs.com/hanyinglong/p/5102141.html b.当 ...

  2. MySQL基础(非常全)

    MySQL基础 一.MySQL概述 1.什么是数据库 ? 答:数据的仓库,如:在ATM的示例中我们创建了一个 db 目录,称其为数据库 2.什么是 MySQL.Oracle.SQLite.Access ...

  3. jQuery静态方法isPlainObject,isEmptyObject方法使用和源码分析

    isPlainObject方法 测试对象是否是纯粹的对象(通过 "{}" 或者 "new Object" 创建的) 示例: //测试是否为纯粹的对象 jQuer ...

  4. html5 canvas简易版捕鱼达人游戏源码

    插件描述:html5利用canvas写的一个js版本的捕鱼,有积分统计,鱼可以全方位移动,炮会跟着鼠标移动,第一次打开需要鼠标移出背景图,再移入的时候就可以控制炮的转动,因为是用的mouseover触 ...

  5. H5中的touch事件

    touch中共有touchstart.touchmove和touchend三个事件: touchstart:触摸开始的时候触发 touchmove:手指在屏幕上滑动的时候触发 touchend:触摸结 ...

  6. Android开发4: Notification编程基础、Broadcast的使用及其静态注册、动态注册方式

    前言 啦啦啦~(博主每次开篇都要卖个萌,大家是不是都厌倦了呢~) 本篇博文希望帮助大家掌握 Broadcast 编程基础,实现动态注册 Broadcast 和静态注册 Broadcast 的方式以及学 ...

  7. 好神奇的代码,可以让匿名用户对特定SharePoint 列表拥用添加列表项的权限哦

    如果你不使用代码,很难从界面上去设置列表的匿名用户(如果可以请告诉我,我会自动删除这个博文)拥有列表项的添加权限. 其实这种需求是非常必要的,比如: 1.允许新用户去提交一个注册申请, 2.在召集临时 ...

  8. @synchronized(self)的用法 小结

    @synchronized() 的作用是创建一个互斥锁,保证在同一时间内没有其它线程对self对象进行修改,起到线程的保护作用, 一般在公用变量的时候使用,如单例模式或者操作类的static变量中使用 ...

  9. 深入浅出React Native 1: 环境配置

    该教程主要介绍如何用react native来开发iOS,所以首先,你需要有一台mac,当然黑苹果也是可以的~ 创建一个react native的项目只需要安装以下五个组件~~(但....坑爹的是,不 ...

  10. 使用PhoneGap开启移动开发之旅

    移动市场风起云涌,只是好像和悲催的.net程序员隔绝.我们内心中一直期待的Windows Phone终究不能匹及windows, 随着时间的流逝,windows phone越来越像扶不起的阿斗,连微软 ...