比赛链接

A

题意

给一个字符串每个物品对应的灯的照明方向,L/R 能照亮它左侧/右侧的所有物品(不包括自己对应的物品),现在能交换相邻两个灯一次(不改变照明方向),问能否找亮所有物品。

题解

知识点:贪心。

显然,如果存在 LRRL 就可以照亮全部,否则全是 LR 就不可行。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; bool solve() {
int n;
cin >> n;
string s;
cin >> s;
s = "?" + s;
for (int i = 1;i < n;i++) {
if (s[i] != s[i + 1]) {
if (s[i] == 'L') cout << i << '\n';
else cout << 0 << '\n';
return true;
}
}
return false;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

B

题意

构造一组数,使得任意相邻两项之和等于全部和。

题解

知识点:构造。

\(n\) 为偶数时,构造 \(1,-1,1,-1,\cdots\) 即可。

\(n\) 为奇数时,显然奇数项和偶数项要各自相等,随后由 \(a_1+\cdots+a_n = a_{n-1}+a_{n}\) 可以得到 \((n-1)a_1+(n-3)a_2 = 0\) ,取 \(a_1 = n-3,a_2 = 1-n\) 即可,只有 \(n=3\) 时无解(因为 \(a_1 = 0\))。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; bool solve() {
int n;
cin >> n;
if (n & 1) {
if (n == 3) return false;
cout << "YES" << '\n';
for (int i = 1;i <= n;i++) {
if (i & 1) cout << n - 3 << ' ';
else cout << 1 - n << ' ';
}
cout << '\n';
}
else {
cout << "YES" << '\n';
for (int i = 1;i <= n;i++) {
if (i & 1) cout << 1 << ' ';
else cout << -1 << ' ';
}
cout << '\n';
}
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << "NO" << '\n';
}
return 0;
}

C

题意

给一组数,可以修改元素变成其相反数。问最少修改几次,可以使得第 \(m\) 个前缀和 \(a_1+\cdots+a_m\) 是所有前缀和里最小的。

题解

知识点:前缀和,数学,贪心。

定义 \(a[l,r] = a_l+\cdots+a_r\) 。

当 \(k\in [1,m-1]\) 时

\[\begin{aligned}
a[1,k] &\geq a[1,m]\\
a[1,k] &\geq a[1,k] + a[k+1,m]\\
0 &\geq a[k+1,m]
\end{aligned}
\]

当 \(k\in [m+1,n]\) 时

\[\begin{aligned}
a[1,k] &\geq a[1,m]\\
a[1,m] + a[m+1,k] &\geq a[1,m]\\
a[m+1,k] &\geq 0
\end{aligned}
\]

所以只要保证任意 \(i\in[2,m]\) ,满足 \(a[i,m]\leq 0\) ;任意 \(i\in[m+1,n]\) ,满足 \(a[m+1,i] \geq 0\) 即可。

每次操作时,贪心地取最优的即可。

时间复杂度 \(O(n\log n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; int a[200007];
bool solve() {
int n, m;
cin >> n >> m;
for (int i = 1;i <= n;i++) cin >> a[i];
int cnt = 0;
multiset<int> ms;
ll sum = 0;
for (int i = m;i >= 2;i--) {
sum += a[i];
ms.insert(a[i]);
if (sum > 0) {
sum -= 2 * (*prev(ms.end()));
ms.erase(prev(ms.end()));
cnt++;
}
}
ms.clear();
sum = 0;
for (int i = m + 1;i <= n;i++) {
sum += a[i];
ms.insert(a[i]);
if (sum < 0) {
sum -= 2 * (*ms.begin());
ms.erase(ms.begin());
cnt++;
}
}
cout << cnt << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

D

题意

给定一组头发长度 \(a_i\) ,以及理想头发长度 \(b_i\) 。

理发师有刀片 \(x_i\) ,每个刀片只能用一次,每次可以修减一段连续区间的头发,满足 \(a'_i = \min(a_i,x),i\in[L,R]\)。

问理发师能不能通过这些刀片将 \(a\) 修剪至 \(b\) 。

题解

知识点:单调栈。

显然 \(a_i<b_i\) 无解。

利用最大值单调栈维护刀片的值。以下按顺序满足:

  1. \(b_i\) 大于栈顶刀片,则栈顶刀片因为太小不能再用了,刀片需要出栈直至 \(b_i\) 小于等于栈顶刀片或栈空。
  2. \(b_i = a_i\) ,说明 \(b_i\) 不需要修剪,什么都不用干。
  3. \(b_i \neq a_i\) ,说明 \(b_i\) 需要修剪,此时如果 \(b_i\) 小于栈顶刀片或栈空,则需要使用新的刀片,满足 \(x = b[i]\) ,如果不存在这个刀片则无解。

全部满足后,即 YES

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; int a[200007];
int b[200007];
bool solve() {
int n;
cin >> n;
for (int i = 1;i <= n;i++) cin >> a[i];
for (int i = 1;i <= n;i++) cin >> b[i];
int m;
cin >> m;
map<int, int> mp;
for (int i = 1;i <= m;i++) {
int x;
cin >> x;
mp[x]++;
}
stack<int> st;
for (int i = 1;i <= n;i++) {
if (a[i] < b[i]) return false;
while (!st.empty() && b[i] > st.top()) st.pop();
if (a[i] != b[i]) {
if (st.empty() || b[i] < st.top()) {
if (mp[b[i]]) {
mp[b[i]]--;
st.push(b[i]);
}
else return false;
}
}
}
cout << "YES" << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << "NO" << '\n';
}
return 0;
}

Hello 2023 A-D的更多相关文章

  1. 1630/2023: [Usaco2005 Nov]Ant Counting 数蚂蚁

    2023: [Usaco2005 Nov]Ant Counting 数蚂蚁 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 85  Solved: 40[S ...

  2. 「LOJ2000~2023」各省省选题选做

    「LOJ2000~2023」各省省选题选做 「SDOI2017」数字表格 莫比乌斯反演. 「SDOI2017」树点涂色 咕咕咕. 「SDOI2017」序列计数 多项式快速幂. 我们将超过 \(p\) ...

  3. HDU 2023 求平均成绩

    Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Status Practice HDU ...

  4. 部分PR回写的数量带有小数,分别是2023工厂的纸箱104007000389,2021工厂的纸盒404002005930;

    描述:部分PR回写的数量带有小数,分别是2023工厂的纸箱104007000389,2021工厂的纸盒404002005930: 原因:所有物料规划PR时对舍入值的先后考虑逻辑影响到回写出来的temp ...

  5. 【BZOJ1630/2023】[Usaco2007 Demo]Ant Counting DP

    [BZOJ1630/2023][Usaco2007 Demo]Ant Counting 题意:T中蚂蚁,一共A只,同种蚂蚁认为是相同的,有一群蚂蚁要出行,个数不少于S,不大于B,求总方案数 题解:DP ...

  6. [Luogu 2023] AHOI2009 维护序列

    [Luogu 2023] AHOI2009 维护序列 恕我冒昧这和线段树模板二有个琴梨区别? #include <cstdio> int n,m; long long p; class S ...

  7. ural 2023 Donald is a postman(水)

    2023. Donald is a postman Time limit: 1.0 secondMemory limit: 64 MB Donald Duck works as a postman f ...

  8. loj #2023. 「AHOI / HNOI2017」抛硬币

    #2023. 「AHOI / HNOI2017」抛硬币   题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个 ...

  9. bzoj1630/2023 [Usaco2007 Demo]Ant Counting

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1630 http://www.lydsy.com/JudgeOnline/problem.ph ...

  10. 洛谷 2023 [AHOI2009]维护序列

    洛谷 2023 [AHOI2009]维护序列 洛谷原题传送门 这个题也是一道经典的线段树模版(其实洛谷的模版二改一下输入顺序就能AC),其中包括区间乘法修改.区间加法修改.区间查询三个操作. 线段树的 ...

随机推荐

  1. 动态编译库 Natasha 5.0 兼容版本发布

    Natasha 5.0 版本已于 2022/10/10 日发布, 此次大版本更迭带来了兼容性支持, 目前 Natasha 可以兼容 standard2.0 及 coreapp3.1 以上版本. 下载使 ...

  2. Gson的使用与理解

    当今社会下,前后端分离,不同系统的信息交互,消息队列的数据传递,微服务的不同服务之间的数据处理,越来越多地方用到了序列化.序列化作为不同系统不同服务之间的数据桥梁.那么方便快捷的序列化工具还是必要的. ...

  3. LOJ2324「清华集训 2017」小Y和二叉树

    题目链接 瞎jb贪一发就过了.首先度数<=2且编号最小的点一定是中序遍历最靠前的点,我们从这个点开始dfs一遍算出子树中度数<=2且编号最小的点记为\(f(i)\),然后从这个点开始一步一 ...

  4. 二进制安装Dokcer

    写在前边 考虑到很多生产环境是内网,不允许外网访问的.恰好我司正是这种场景,写一篇二进制方式安装Docker的教程,用来帮助实施同事解决容器部署的第一个难关. 本文将以二进制安装方式,在CentOS7 ...

  5. Mysql+Mycat+NFS+Rsync+LVS+DNS+IPtables综合实验

    1.环境准备 服务器 IP地址 作用 系统版本 Mysql-master eth0:10.0.0.58 主数据库 Rocky8.6 Mysql-slave1 eth0:10.0.0.68 备数据库 R ...

  6. ES6 学习笔记(三)原始值与引用值

    总结: 1.原始值,表示单一的数据,如10,"abc",true等. 1.1. ES的6种原始值: Undefined.Null.Boolean.Number.String.Sym ...

  7. SpringCloud(六) - RabbitMQ安装,三种消息发送模式,消息发送确认,消息消费确认(自动,手动)

    1.安装erlang语言环境 1.1 创建 erlang安装目录 mkdir erlang 1.2 上传解压压缩包 上传到: /root/ 解压缩# tar -zxvf otp_src_22.0.ta ...

  8. UML建模语言、设计原则、设计模式

    1.UML统一建模语言 定义:用于软件系统设计与分析的语言工具 目的:帮助开发人员更好的梳理逻辑.思路 学习地址:UML概述_w3cschool 官网:https://www.omg.org/spec ...

  9. webpack中 hash chunkhash

    hash一般是结合CDN缓存来使用,通过webpack构建之后,生成对应文件名自动带上对应的MD5值.如果文件内容发生改变的话,那么对应文件hash值也会改变,对应的HTML引用的URL地址也会改变, ...

  10. 从0到1搭建redis6.0.7续更~

    "心有所向,日复一日,必有精进" 前言: 想必大家看完我之前写的搭建redis服务器,大家都已经把redis搭建起来了吧如果没有搭建起来的小可爱请移步这里哦从0到1搭建redis6 ...