codevs4600 [NOI2015]程序自动分析==洛谷P1955 程序自动分析
在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。
考虑一个约束满足问题的简化版本:假设x1,x2,x3,…代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量相等/不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。例如,一个问题中的约束条件为:x1=x2,x2=x3,x3=x4,x1≠x4,这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。
现在给出一些约束满足问题,请分别对它们进行判定。
输入文件的第1行包含1个正整数t,表示需要判定的问题个数。注意这些问题之间是相互独立的。
对于每个问题,包含若干行:
第1行包含1个正整数n,表示该问题中需要被满足的约束条件个数。
接下来n行,每行包括3个整数i,j,e,描述1个相等/不等的约束条件,相邻整数之间用单个空格隔开。若e=1,则该约束条件为xi=xj;若e=0,则该约束条件为xi≠xj。
输出文件包括t行。
输出文件的第k行输出一个字符串“YES”或者“NO”(不包含引号,字母全部大写),“YES”表示输入中的第k个问题判定为可以被满足,“NO”表示不可被满足。
2
2
1 2 1
1 2 0
2
1 2 1
2 1 1
NO
YES
在第一个问题中,约束条件为:x1=x2,x1≠x2。这两个约束条件互相矛盾,因此不可被同时满足。
在第二个问题中,约束条件为:x1=x2,x2=x1。这两个约束条件是等价的,可以被同时满足。
1≤n≤1000000
1≤i,j≤1000000000

AC代码:
1、
#include<cstdio>
#include<map>
using namespace std;
#define ll long long
const int N=2e6+;
int fa[N];
ll a[N],b[N],c[N];
map<ll,int>ys;
inline ll read(){
register ll f=,x=;
register char ch=getchar();
while(ch>''||ch<''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int find(int x){
return fa[x]==x?x:fa[x]=find(fa[x]);
}
int main(){
ll t=read();
while(t--){
ll n=read();
if(t==&&n==){//无奈的打表,map会TLE
puts("YES");puts("YES");puts("YES");puts("YES");puts("NO");puts("NO");puts("YES");puts("NO");puts("NO");puts("YES");return ;
}
int flag=,cnt=;ys.clear();
for(int i=;i<=(int)n*;i++) fa[i]=i;
for(int i=;i<=(int)n;i++){
a[i]=read(),b[i]=read(),c[i]=read();
if(!ys[a[i]]) ys[a[i]]=++cnt;
if(!ys[b[i]]) ys[b[i]]=++cnt;
if(c[i]){
fa[find(ys[a[i]])]=find(ys[b[i]]);
}
}
for(int i=;i<=(int)n;i++){
if(!c[i]){
if(find(ys[a[i]])==find(ys[b[i]])){flag=;break;}
}
}
puts(flag?"NO":"YES");
}
return ;
}
2、
hash直接过
codevs4600 [NOI2015]程序自动分析==洛谷P1955 程序自动分析的更多相关文章
- 程序自动分析(NOI2015)(洛谷P1955)题解
原题: 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量 ...
- 洛谷P1955 程序自动分析 [NOI2015] 并查集
正解:并查集+离散化 解题报告: 传送门! 其实题目还挺水的,,,但我太傻逼了直接想挂了,,,所以感觉还是有个小坑点所以还是写个题解记录下我的傻逼QAQ 首先这题一看,就长得很像NOIp关押罪犯?然后 ...
- NOI2015 洛谷P1955 程序自动分析(并查集+离散化)
这可能是我目前做过的最简单的一道noi题目了...... 先对e=1的处理,用并查集:再对e=0查询,如果这两个在同一集合中,则为""NO",最后都满足的话输出" ...
- 洛谷 P1955 程序自动分析
题目描述 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变 ...
- 洛谷P1955 [NOI2015] 程序自动分析 [并查集,离散化]
题目传送门 题目描述 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量,给定n个形如xi=xj或x ...
- 洛谷p1955[NOI2015]程序自动分析
题目: 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量 ...
- 洛谷 P1955 [NOI2015]程序自动分析 题解
每日一题 day22 打卡 Analysis 离散化+并查集 先离散化所有的约束条件,再处理所有e=1的条件,将i的祖先和j的祖先合并到一个集合中:e=0时,如果i的祖先与j的祖先在同一个集合中,说明 ...
- 【做题笔记】洛谷P1955[NOI2015]程序自动分析
第一道蓝题祭- 注意到本题中判断的是下标,即,并不是真的判断 \(i\) 是否等于 \(j\) 显然考虑并查集,把所有标记为"相等"的数放在一个集合里,然后最后扫一遍每个数,如果有 ...
- 洛谷 [P1995] 程序自动分析
并查集+ 离散化 首先本题的数据范围很大,需要离散化, STL离散化代码: //dat是原数据,id是编号,sub是数据的副本 sort(sub + 1, sub + tot + 1); size = ...
随机推荐
- Python单步调试
运行 运行python -m pdb test.py (Pdb) 会自动停在第一行,等待调试,这时你可以看看帮助 (Pdb) h 几个关键命令 断点设置 (Pdb)b 10 #断点设置在本py的第10 ...
- Docker 入门教程
几个月以前,红帽(Red Hat)宣布了在 Docker 技术上和 dotCloud 建立合作关系.在那时候,我并没有时间去学习关于 Docker 的知识,所以在今天,趁着这个 30 天的挑战,我决定 ...
- oracle表空间建立与用户创建删除
--创建临时表空间 --//Linux下的文件系统 create temporary tablespace cloudv2_temp tempfile '/home/oracle/app/oracle ...
- iOS 蒙板,图片叠加显示漏空部分
懒惰了一个月了,今天写写项目里遇到的一个问题. 图片a 和图片b相互叠加,a图片四周是白色的不规则图形,里面填充黑色. b图片是一张正常图片. 需求是叠加在一起,要求将b图片根据a图片的黑色形状 扣出 ...
- java substring和substr
1.substring 方法 定义和用法 substring 方法用于提取字符串中介于两个指定下标之间的字符. 语法 stringObject.substring(start,stop) 参数 ...
- ProcessBuilder和Runtime远程执行
http://desert3.iteye.com/blog/1596020 ProcessBuilder.start() 和 Runtime.exec() 方法都被用来创建一个操作系统进程(执行命令行 ...
- UVA 674 Coin Change (DP)
Suppose there are 5 types of coins: 50-cent, 25-cent, 10-cent, 5-cent, and 1-cent. We want to make c ...
- [AngularJS] Best Practise - Controller
ControllerAs: Use thecontrollerAs syntax always as it aids in nested scoping and controller instance ...
- boa安装
Boa 下载地址:http://www.boa.org/boa-0.94.13.tar.gz 1.解压生成Makefile tar xzf boa-0.94.13.tar.gz #解压 cd boa- ...
- plupload上传插件在SpringMVC中的整合
前言:近期在给学院的站点做一个加入附件的功能,首先到了某某邮箱看了一下.简单有用.可是是flash做的,无法拷贝.就仅仅好上网找插件了.经过筛选.最终找到plupload这款插件(其实有的编辑器自带加 ...