hdu 5407 CRB and Candies(组合数+最小公倍数+素数表+逆元)2015 Multi-University Training Contest 10
题意:
输入n,求c(n,0)到c(n,n)的所有组合数的最小公倍数。
输入:
首行输入整数t,表示共有t组测试样例。
每组测试样例包含一个正整数n(1<=n<=1e6)。
输出:
输出结果(mod 1e9+7)。
感觉蛮变态的,从比赛开始我就是写的这道题,比赛结束还是没写出来……
期间找到了逆元,最小公倍数,组合数的各种公式,但是爆了一下午tle。
比赛结束,题解告诉我,公式秒杀法……
但是公式看不懂,幸好有群巨解说,所以有些听懂了,但还是需要继续思考才能弄懂。
题解:
设ans[i]表示i的所有组合数的最小公倍数。
设f[i]表示从1到i的正整数的最小公倍数。
然后获得从f[i]到ans[i]的公式——ans[i] = f[i+1]/i。 anss[i-1] = (f[i]*inv[i])%Mod;
然后获得求f[i]的公式——
if(i == p^k) f[i] = f[i-1]*p;
else f[i] = f[i-1];
接下来需要做的就是找到那些i == p^k了。
解题步骤:
1. 打素数表;
2. 由素数表寻找i == p^k;
3. f[1] = 1,打f[]数组表和ans[]数组表;
4. 输入数据;
5. 根据输入数据和ans[]表输出答案。
我认为还有其他方法,因为ac的程序的运行时间从15ms到900+ms都有。更多方法持续寻找中。
我的(根据题解的)代码——
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; #define LL long long
const int N = ;
const int Mod = ; int n, t;
LL ans, mid;
LL inv[N];
LL anss[N];
bool su2[N];
int su[N], su1[N];
LL f[N]; //f[i]表示1~i的最小公倍数 void table()
{
inv[] = ;
for(int i = ; i < N; i++) //求i的逆元
{
inv[i] = inv[Mod%i]*(Mod-Mod/i) % Mod;
} memset(su2, , sizeof(su2));
memset(su1, , sizeof(su1));
su2[] = su2[] = ; //求N以内的素数
su2[] = ;
for(int i = ; i < N; i++) su2[i] = i% == ? : ;
for(int i = ; i <= sqrt(N*1.0); i++)
{
if(su2[i])
{
for(int j = i*i; j <= N; j += *i)
{
su2[j] = ;
}
}
}
int k = ;
for(int i = ; i < N; i++) //打N以内的素数表
{
if(su2[i] == ) su[k++] = i;
}
for(int i = ; i < k; i++) //寻找满足p^k的数,其中p为素数,k为正整数
{
LL mid = su[i];
while(mid < N)
{
su1[mid] = su[i];
mid *= su[i];
}
}
f[] = ; //打N以内的1~i的最小公倍数表
for(int i = ; i < N; i++)
{
if(su1[i]) f[i] = f[i-]*su1[i];
else f[i] = f[i-];
f[i] %= Mod;
anss[i-] = (f[i]*inv[i])%Mod; //答案表
}
} int main()
{
//freopen("test.in", "r", stdin);
//freopen("test.out", "r", stdout);
table();
scanf("%d", &t);
while(t--)
{
scanf("%d", &n);
printf("%I64d\n", anss[n]);
}
return ;
}
hdu 5407 CRB and Candies(组合数+最小公倍数+素数表+逆元)2015 Multi-University Training Contest 10的更多相关文章
- HDU 5407 CRB and Candies(LCM +最大素因子求逆元)
[题目链接]pid=5407">click here~~ [题目大意]求LCM(Cn0,Cn1,Cn2....Cnn)%MOD 的值 [思路]来图更直观: 这个究竟是怎样推出的.说实话 ...
- Hdu 5407 CRB and Candies (找规律)
题目链接: Hdu 5407 CRB and Candies 题目描述: 给出一个数n,求lcm(C(n,0),C[n,1],C[n-2]......C[n][n-2],C[n][n-1],C[n][ ...
- HDU 5407——CRB and Candies——————【逆元+是素数次方的数+公式】
CRB and Candies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- HDU 5407(2015多校10)-CRB and Candies(组合数最小公倍数+乘法逆元)
题目地址:pid=5407">HDU 5407 题意:CRB有n颗不同的糖果,如今他要吃掉k颗(0<=k<=n),问k取0~n的方案数的最小公倍数是多少. 思路:首先做这道 ...
- 2015 Multi-University Training Contest 10 hdu 5407 CRB and Candies
CRB and Candies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- LCM性质 + 组合数 - HDU 5407 CRB and Candies
CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...
- HDU 5407 CRB and Candies
题意:给一个正整数k,求lcm((k, 0), (k, 1), ..., (k, k)) 解法:在oeis上查了这个序列,得知答案即为lcm(1, 2, ..., k + 1) / (k + 1),而 ...
- hdu 5416 CRB and Tree(2015 Multi-University Training Contest 10)
CRB and Tree Time Limit: 8000/4000 MS (J ...
- 2015 Multi-University Training Contest 10 hdu 5406 CRB and Apple
CRB and Apple Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)To ...
随机推荐
- SPOJ LCS2 后缀自动机
多串的LCS,注意要利用拓扑序更新suf的len. 我用min,max,三目会超时,所以都改成了if,else #pragma warning(disable:4996) #include<cs ...
- I²C接口学习总结
1.IIC总线概念: a.只有两条总线线路:一条串行数据线,一条串行时钟线. b.每个连接到总线的器件都可以使用软件根据它们的唯一的地址来识别. c.传输数据的设备间是简单的主从关系. ...
- 使用CAShapeLayer与UIBezierPath画出想要的图形
使用CAShapeLayer与UIBezierPath可以实现不在view的drawRect方法中就画出一些想要的图形 步骤: 1.新建UIBezierPath对象bezierPath 2.新建CAS ...
- PCB工艺镀金(电金)和沉金(化金)的区别
1.镀金和沉金的别名分别是什么? 镀金:硬金,电金(镀金也就是电金) 沉金:软金,化金 (沉金也就是化金) 2.别名的由来: 镀金:通过电镀的方式,使金粒子附着到pcb板上,所以叫电金,因为附着 ...
- 创业草堂之一:创业的Idea是怎样产生的?
“创业”,在很多人的想象中,就是两个小伙子在车库里.或者在学生寝室里,侃出了一个Idea,然后找到了一个投资人或VC,经过几句话讲解,VC拍手叫绝,10钟内当场拍板,砸下了2000万美金,然后两小伙子 ...
- 解决Nginx下WordPress后台404的问题
在把这个博客做好后,上传到nginx服务器上却出现问题. 首先是wordpress官方的伪静态是通过.htaccess实现的,但nginx并不支持.htaccess,无奈只好在网上找到wordpres ...
- 深度分析Java的ClassLoader机制(源码级别)
写在前面:Java中的所有类,必须被装载到jvm中才能运行,这个装载工作是由jvm中的类装载器完成的,类装载器所做的工作实质是把类文件从硬盘读取到内存中,JVM在加载类的时候,都是通过ClassLoa ...
- ubuntu 映射网络驱动器到本地
公司办公都是在ubuntu服务器上,所以每每拷贝修改文件都要ftp之类的,实在不方便. 索性将服务器挂载到自己本地目录下. 服务器端参考其他samba安装和配置.这里只是说下本地自动挂载方法. 一.首 ...
- Mvc Kissy uploader实现图片批量上传 附带瀑布流的照片墙
前言 KISSY 是由阿里集团前端工程师们发起创建的一个开源 JS 框架.它具备模块化.高扩展性.组件齐全,接口一致.自主开发.适合多种应用场景等特性.本人在一次项目中层使用这个uploader组件. ...
- js中的this怎么理解
本博客供自己学习备忘, js中的this感觉很混乱,目前还有不少地方搞得不是很清楚,看到一篇不错的文章,先摘下来 this是Javascript语言的一个关键字它代表函数运行时,自动生成的一个内部对象 ...