题意:

输入n,求c(n,0)到c(n,n)的所有组合数的最小公倍数。

输入:

首行输入整数t,表示共有t组测试样例。

每组测试样例包含一个正整数n(1<=n<=1e6)。

输出:

输出结果(mod 1e9+7)。

感觉蛮变态的,从比赛开始我就是写的这道题,比赛结束还是没写出来……

期间找到了逆元,最小公倍数,组合数的各种公式,但是爆了一下午tle。

比赛结束,题解告诉我,公式秒杀法……

但是公式看不懂,幸好有群巨解说,所以有些听懂了,但还是需要继续思考才能弄懂。

题解:

设ans[i]表示i的所有组合数的最小公倍数。

设f[i]表示从1到i的正整数的最小公倍数。

然后获得从f[i]到ans[i]的公式——ans[i] = f[i+1]/i。                anss[i-1] = (f[i]*inv[i])%Mod;

然后获得求f[i]的公式——

  if(i == p^k) f[i] = f[i-1]*p;

  else f[i] = f[i-1];

接下来需要做的就是找到那些i == p^k了。

解题步骤:

1. 打素数表;

2. 由素数表寻找i == p^k;

3. f[1] = 1,打f[]数组表和ans[]数组表;

4. 输入数据;

5. 根据输入数据和ans[]表输出答案。

我认为还有其他方法,因为ac的程序的运行时间从15ms到900+ms都有。更多方法持续寻找中。

我的(根据题解的)代码——

 #include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; #define LL long long
const int N = ;
const int Mod = ; int n, t;
LL ans, mid;
LL inv[N];
LL anss[N];
bool su2[N];
int su[N], su1[N];
LL f[N]; //f[i]表示1~i的最小公倍数 void table()
{
inv[] = ;
for(int i = ; i < N; i++) //求i的逆元
{
inv[i] = inv[Mod%i]*(Mod-Mod/i) % Mod;
} memset(su2, , sizeof(su2));
memset(su1, , sizeof(su1));
su2[] = su2[] = ; //求N以内的素数
su2[] = ;
for(int i = ; i < N; i++) su2[i] = i% == ? : ;
for(int i = ; i <= sqrt(N*1.0); i++)
{
if(su2[i])
{
for(int j = i*i; j <= N; j += *i)
{
su2[j] = ;
}
}
}
int k = ;
for(int i = ; i < N; i++) //打N以内的素数表
{
if(su2[i] == ) su[k++] = i;
}
for(int i = ; i < k; i++) //寻找满足p^k的数,其中p为素数,k为正整数
{
LL mid = su[i];
while(mid < N)
{
su1[mid] = su[i];
mid *= su[i];
}
}
f[] = ; //打N以内的1~i的最小公倍数表
for(int i = ; i < N; i++)
{
if(su1[i]) f[i] = f[i-]*su1[i];
else f[i] = f[i-];
f[i] %= Mod;
anss[i-] = (f[i]*inv[i])%Mod; //答案表
}
} int main()
{
//freopen("test.in", "r", stdin);
//freopen("test.out", "r", stdout);
table();
scanf("%d", &t);
while(t--)
{
scanf("%d", &n);
printf("%I64d\n", anss[n]);
}
return ;
}

hdu 5407 CRB and Candies(组合数+最小公倍数+素数表+逆元)2015 Multi-University Training Contest 10的更多相关文章

  1. HDU 5407 CRB and Candies(LCM +最大素因子求逆元)

    [题目链接]pid=5407">click here~~ [题目大意]求LCM(Cn0,Cn1,Cn2....Cnn)%MOD 的值 [思路]来图更直观: 这个究竟是怎样推出的.说实话 ...

  2. Hdu 5407 CRB and Candies (找规律)

    题目链接: Hdu 5407 CRB and Candies 题目描述: 给出一个数n,求lcm(C(n,0),C[n,1],C[n-2]......C[n][n-2],C[n][n-1],C[n][ ...

  3. HDU 5407——CRB and Candies——————【逆元+是素数次方的数+公式】

    CRB and Candies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  4. HDU 5407(2015多校10)-CRB and Candies(组合数最小公倍数+乘法逆元)

    题目地址:pid=5407">HDU 5407 题意:CRB有n颗不同的糖果,如今他要吃掉k颗(0<=k<=n),问k取0~n的方案数的最小公倍数是多少. 思路:首先做这道 ...

  5. 2015 Multi-University Training Contest 10 hdu 5407 CRB and Candies

    CRB and Candies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  6. LCM性质 + 组合数 - HDU 5407 CRB and Candies

    CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...

  7. HDU 5407 CRB and Candies

    题意:给一个正整数k,求lcm((k, 0), (k, 1), ..., (k, k)) 解法:在oeis上查了这个序列,得知答案即为lcm(1, 2, ..., k + 1) / (k + 1),而 ...

  8. hdu 5416 CRB and Tree(2015 Multi-University Training Contest 10)

    CRB and Tree                                                             Time Limit: 8000/4000 MS (J ...

  9. 2015 Multi-University Training Contest 10 hdu 5406 CRB and Apple

    CRB and Apple Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

随机推荐

  1. struts2-2.3.4.1的struts-default.xml源码

    <?xml version="1.0" encoding="UTF-8" ?> <!-- /* * $Id: struts-default.x ...

  2. REST_FRAMEWORK加深记忆-三种CLASS VIEW的进化史

    一层一层的封装,又能到底层,就会有全局感啦... from rest_framework import status from rest_framework.response import Respo ...

  3. 2013 ACM-ICPC长沙赛区全国邀请赛——Bottles Arrangement

    这题当时竟然没看啊…… 找规律:求和m+m+m-1+m-1+……前n项 ;}

  4. Java 连接SQLite数据库

    下载jar包: http://www.sqlite.com.cn/Upfiles/source/sqlitejdbc-v033-nested.tgz public class TestSQLite { ...

  5. [hankerrank]Counter game

    https://www.hackerrank.com/contests/w8/challenges/counter-game 关键是二分查找等于或最接近的小于target的数.可以使用和mid+1判断 ...

  6. yii2 学习中

    属性: public function __get($name) // 这里$name是属性名 { $getter = 'get' . $name; // getter函数的函数名 if (metho ...

  7. 1401 - Remember the Word

    注意到单词的长度最长100,其实最糟糕复杂度应该能到O(300005*100),需要注意的是在字典树上匹配单词时,一旦不匹配,则后面的就不会匹配,需要break出来(这个害我TLE查了半天,日!),还 ...

  8. 通过jcifs.jar 创建远程文件和文件夹

    package com.project.remoteUrl;import java.io.File;import java.io.InputStream;import java.io.OutputSt ...

  9. 坑爹的Mysql

    本想尝试下如何使用Spring来管理Hibernate的事务,当配置好Spring的配置文件后,进行插入数据,结果报错了,错误是: Mysql Field * doesn't have a defau ...

  10. PHP程序员的40点陋习,我几乎全部中枪

    1.不写注释 2.不使用可以提高生产效率的IDE工具 3.不使用版本控制 4.不按照编程规范写代码 5.不使用统一的方法 6.编码前不去思考和计划 7.在执行sql前不执行编码和安全检测 8.不使用测 ...