ElasticSearch常用的很受欢迎的是IK,这里稍微介绍下安装过程及测试过程。
 

1、ElasticSearch官方分词

自带的中文分词器很弱,可以体检下:

[zsz@VS-zsz ~]$ curl -XGET 'http://192.168.31.77:9200/_analyze?analyzer=standard' -d '岁月如梭'

{

    "tokens": [

        {

            "token": "岁",

            "start_offset": 0,

            "end_offset": 1,

            "type": "<IDEOGRAPHIC>",

            "position": 0

        },

        {

            "token": "月",

            "start_offset": 1,

            "end_offset": 2,

            "type": "<IDEOGRAPHIC>",

            "position": 1

        },

        {

            "token": "如",

            "start_offset": 2,

            "end_offset": 3,

            "type": "<IDEOGRAPHIC>",

            "position": 2

        },

        {

            "token": "梭",

            "start_offset": 3,

            "end_offset": 4,

            "type": "<IDEOGRAPHIC>",

            "position": 3

        }

    ]

}
[zsz@VS-zsz ~]$ curl -XGET 'http://192.168.31.77:9200/_analyze?analyzer=standard' -d 'i am an enginner'

{

    "tokens": [

        {

            "token": "i",

            "start_offset": 0,

            "end_offset": 1,

            "type": "<ALPHANUM>",

            "position": 0

        },

        {

            "token": "am",

            "start_offset": 2,

            "end_offset": 4,

            "type": "<ALPHANUM>",

            "position": 1

        },

        {

            "token": "an",

            "start_offset": 5,

            "end_offset": 7,

            "type": "<ALPHANUM>",

            "position": 2

        },

        {

            "token": "enginner",

            "start_offset": 8,

            "end_offset": 16,

            "type": "<ALPHANUM>",

            "position": 3

        }

    ]

}
由此看见,ES的官方中文分词能力较差。
 
2、IK中文分词器
 
2.1、如何你下载的ik是源码半,需要打包该分词器,linux安装maven

tar zxvf apache-maven-3.0.5-bin.tar.gz
mv apache-maven-3.0.5 /usr/local/apache-maven-3.0.5
vi /etc/profile
增加:
export MAVEN_HOME=/usr/local/apache-maven-3.0.5

export PATH=$PATH:$MAVEN_HOME/bin
 
source /etc/profile 
mvn -v
2.2、对源码打包得到target/目录下的内容
 
mvn clean package 
 
将打包好的IK插件内容部署到ES中:
[zsz@VS-zsz ~]$ cd /home/zsz/elasticsearch-analysis-ik-1.10.0/target/releases/
[zsz@VS-zsz releases]$ mkdir /usr/local/elasticsearch-2.4.0/plugins/ik/
[zsz@VS-zsz releases]$ cp elasticsearch-analysis-ik-1.10.0.zip /usr/local/elasticsearch-2.4.0/plugins/ik/elasticsearch-analysis-ik-1.10.0.zip
[zsz@VS-zsz releases]$ unzip /usr/local/elasticsearch-2.4.0/plugins/ik/elasticsearch-analysis-ik-1.10.0.zip
[zsz@VS-zsz releases]$ cd /usr/local/elasticsearch-2.4.0/plugins/ik/
[zsz@VS-zsz ik]$ rm elasticsearch-analysis-ik-1.10.0.zip
[zsz@VS-zsz ik]$ mkdir /usr/local/elasticsearch-2.4.0/config/ik
 
将IK的配置copy到ElasticSearch的配置中:
[zsz@VS-zsz ik]$ cp /home/zsz/elasticsearch-analysis-ik-1.10.0/config /usr/local/elasticsearch-2.4.0/config/ik
 
更改ElasticSearch的配置:
[zsz@VS-zsz ik]$ vi /usr/local/elasticsearch-2.4.0/config/elasticsearch.yml
在最后加上分词解析器的配置:
index.analysis.analyzer.ik.type : "ik"
 
启动ElasticSearch:
[zsz@VS-zsz ik]$ cd  /usr/local/elasticsearch-2.4.0/
[zsz@VS-zsz elasticsearch-2.4.0]$ ./bin/elasticsearch -d
 
测试IK分词器的效果:
[zsz@VS-zsz elasticsearch-2.4.0]$ curl -XGET 'http://192.168.31.77:9200/_analyze?analyzer=ik' -d '岁月如梭'
{

    "tokens": [

        {

            "token": "岁月如梭",

            "start_offset": 0,

            "end_offset": 4,

            "type": "CN_WORD",

            "position": 0

        },

        {

            "token": "岁月",

            "start_offset": 0,

            "end_offset": 2,

            "type": "CN_WORD",

            "position": 1

        },

        {

            "token": "如梭",

            "start_offset": 2,

            "end_offset": 4,

            "type": "CN_WORD",

            "position": 2

        },

        {

            "token": "梭",

            "start_offset": 3,

            "end_offset": 4,

            "type": "CN_WORD",

            "position": 3

        }

    ]

}
[zsz@VS-zsz config]$ curl -XGET 'http://192.168.31.77:9200/_analyze?analyzer=ik' -d 'elasticsearch很受欢迎的的一款拥有活跃社区开源的搜索解决方案'
{

    "tokens": [

        {

            "token": "elasticsearch",

            "start_offset": 0,

            "end_offset": 13,

            "type": "CN_WORD",

            "position": 0

        },

        {

            "token": "elastic",

            "start_offset": 0,

            "end_offset": 7,

            "type": "CN_WORD",

            "position": 1

        },

        {

            "token": "很受",

            "start_offset": 13,

            "end_offset": 15,

            "type": "CN_WORD",

            "position": 2

        },

        {

            "token": "受欢迎",

            "start_offset": 14,

            "end_offset": 17,

            "type": "CN_WORD",

            "position": 3

        },

        {

            "token": "欢迎",

            "start_offset": 15,

            "end_offset": 17,

            "type": "CN_WORD",

            "position": 4

        },

        {

            "token": "一款",

            "start_offset": 19,

            "end_offset": 21,

            "type": "CN_WORD",

            "position": 5

        },

        {

            "token": "一",

            "start_offset": 19,

            "end_offset": 20,

            "type": "TYPE_CNUM",

            "position": 6

        },

        {

            "token": "款",

            "start_offset": 20,

            "end_offset": 21,

            "type": "COUNT",

            "position": 7

        },

        {

            "token": "拥有",

            "start_offset": 21,

            "end_offset": 23,

            "type": "CN_WORD",

            "position": 8

        },

        {

            "token": "拥",

            "start_offset": 21,

            "end_offset": 22,

            "type": "CN_WORD",

            "position": 9

        },

        {

            "token": "有",

            "start_offset": 22,

            "end_offset": 23,

            "type": "CN_CHAR",

            "position": 10

        },

        {

            "token": "活跃",

            "start_offset": 23,

            "end_offset": 25,

            "type": "CN_WORD",

            "position": 11

        },

        {

            "token": "跃",

            "start_offset": 24,

            "end_offset": 25,

            "type": "CN_WORD",

            "position": 12

        },

        {

            "token": "社区",

            "start_offset": 25,

            "end_offset": 27,

            "type": "CN_WORD",

            "position": 13

        },

        {

            "token": "开源",

            "start_offset": 27,

            "end_offset": 29,

            "type": "CN_WORD",

            "position": 14

        },

        {

            "token": "搜索",

            "start_offset": 30,

            "end_offset": 32,

            "type": "CN_WORD",

            "position": 15

        },

        {

            "token": "索解",

            "start_offset": 31,

            "end_offset": 33,

            "type": "CN_WORD",

            "position": 16

        },

        {

            "token": "索",

            "start_offset": 31,

            "end_offset": 32,

            "type": "CN_WORD",

            "position": 17

        },

        {

            "token": "解决方案",

            "start_offset": 32,

            "end_offset": 36,

            "type": "CN_WORD",

            "position": 18

        },

        {

            "token": "解决",

            "start_offset": 32,

            "end_offset": 34,

            "type": "CN_WORD",

            "position": 19

        },

        {

            "token": "方案",

            "start_offset": 34,

            "end_offset": 36,

            "type": "CN_WORD",

            "position": 20

        }

    ]

}
 
可以看到,中文分词变得更加合理。
 本文地址:http://www.cnblogs.com/zhongshengzhen/p/elasticsearch_ik.html
 

ElasticSearch中文分词(IK)的更多相关文章

  1. java中调用ElasticSearch中文分词ik没有起作用

    问题描述: 项目中已经将'齐鲁壹点'加入到扩展词中,但是使用客户端调用的时候,高亮显示还是按照单个文字分词的: 解决方案: 1.创建Mapping使用的分词使用ik 2.查询使用QueryBuilde ...

  2. Elasticsearch 中文分词(elasticsearch-analysis-ik) 安装

    由于elasticsearch基于lucene,所以天然地就多了许多lucene上的中文分词的支持,比如 IK, Paoding, MMSEG4J等lucene中文分词原理上都能在elasticsea ...

  3. ES5中文分词(IK)

    ElasticSearch5中文分词(IK) ElasticSearch安装 官网:https://www.elastic.co 1.ElasticSearch安装 1.1.下载安装公共密钥 rpm ...

  4. elasticsearch 中文分词(elasticsearch-analysis-ik)安装

    elasticsearch 中文分词(elasticsearch-analysis-ik)安装 下载最新的发布版本 https://github.com/medcl/elasticsearch-ana ...

  5. ElasticSearch(三) ElasticSearch中文分词插件IK的安装

    正因为Elasticsearch 内置的分词器对中文不友好,会把中文分成单个字来进行全文检索,所以我们需要借助中文分词插件来解决这个问题. 一.安装maven管理工具 Elasticsearch 要使 ...

  6. ElasticSearch 中文分词插件ik 的使用

    下载 IK 的版本要与 Elasticsearch 的版本一致,因此下载 7.1.0 版本. 安装 1.中文分词插件下载地址:https://github.com/medcl/elasticsearc ...

  7. elasticsearch中文分词器(ik)配置

    elasticsearch默认的分词:http://localhost:9200/userinfo/_analyze?analyzer=standard&pretty=true&tex ...

  8. ElasticSearch中文分词器-IK分词器的使用

    IK分词器的使用 首先我们通过Postman发送GET请求查询分词效果 GET http://localhost:9200/_analyze { "text":"农业银行 ...

  9. ElasticSearch5中文分词(IK)

    ElasticSearch安装 官网:https://www.elastic.co 1.ElasticSearch安装 1.1.下载安装公共密钥 rpm --import https://artifa ...

随机推荐

  1. DrawDibDraw函数的使用方法

    使用windows的的自带的函数来显示图像可能始终还是绕不开两个概念, 视口和窗口. 视口--- 屏幕上的一个显示用的矩形框. 窗口--- 完整图像上的一个用于取数的矩形框. 屏幕的宽度.高度和视口参 ...

  2. Java基础——异常处理

    异常的层次结构 所有的异常类都是 java.lang.Exception 类的子类型.异常类都是 Throwable 类的子类.除了异常类 Error 类也是由 Throwable 类产生的的子类1. ...

  3. 【树状数组(二叉索引树)】轻院热身—candy、NYOJ-116士兵杀敌(二)

    [概念] 转载连接:树状数组 讲的挺好. 这两题非常的相似,查询区间的累加和.更新结点.Add(x,d) 与 Query(L,R) 的操作 [题目链接:candy] 唉,也是现在才发现这题用了这个知识 ...

  4. 【转】linux中wait与waitpid的差别

    原文网址:http://blog.163.com/libo_5/blog/static/15696852010324287748/ zombie不占用内存也不占用CPU,表面上我们可以不用在乎它们的存 ...

  5. mysql 基础命令入门学习

    登陆到mysql mysql -u 用户名 -p [数据库]   显示数据库 show databases;   使用一个数据库 use 数据库名;   显示表 show tables;   纠正数据 ...

  6. 一些网站的Android客户端

    实际上就是浏览器(WebView),外面包装上了用户体验更好的外壳

  7. RESTLET开发实例(一)基于JAX-RS的REST服务

    RESTLET介绍 Restlet项目为“建立REST概念与Java类之间的映射”提供了一个轻量级而全面的框架.它可用于实现任何种类的REST式系统,而不仅仅是REST式Web服务. Restlet项 ...

  8. Delphi RichEx 图像

    unit RichEx; {2005-03-04 LiChengbinAdded:Insert bitmap or gif into RichEdit controls from source fil ...

  9. ORACLE临时表总结[转]

    临时表概念 临时表就是用来暂时保存临时数据(亦或叫中间数据)的一个数据库对象,它和普通表有些类似,然而又有很大区别.它只能存储在临时表空间,而非用户的表空间.ORACLE临时表是会话或事务级别的,只对 ...

  10. rfid 门卡系统和人体红外感应开发

    今天忙了一天了,因为毕昇杯我发现如果不加把劲,可能寒假之前代码搞不出了,今天突击了两个模块,一个人体感应模块,和rfid刷卡模块,这两个模块谈不上自己编写代码,今天的任务也仅仅是看懂了代码,现在我总结 ...