bjfu1238 卡特兰数取余
题目就是指定n,求卡特兰数Ca(n)%m。求卡特兰数有递推公式、通项公式和近似公式三种,因为要取余,所以近似公式直接无法使用,递推公式我简单试了一下,TLE。所以只能从通项公式入手。
Ca(n) = (2*n)! / n! / (n+1)!
思想就是把Ca(n)质因数分解,然后用快速幂取余算最后的答案。不过,算n!时如果从1到n依次质因数分解,肯定是要超时的,好在阶乘取余有规律,不断除素因子即可。
最后还是擦边过,可能筛法写得一般吧,也算是题目要求太柯刻。
/*
* Author : ben
*/
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
#include <stack>
#include <string>
#include <vector>
#include <deque>
#include <list>
#include <functional>
#include <numeric>
#include <cctype>
using namespace std;
#ifdef ON_LOCAL_DEBUG
#else
#endif typedef long long LL;
const int MAXN = ;
const int N = ;
bool isPrime[N + ];//多用两个元素以免判断边界
int pn, pt[MAXN], num[MAXN]; void init_prime_table() {
memset(isPrime, true, sizeof(isPrime));
int p = , q, del;
double temp;
while (p <= N) {
while (!isPrime[p]) { p++; }
if (p > N) {//已经结束
break; }
temp = (double) p;
temp *= p;
if (temp > N)
break;
while (temp <= N) {
del = (int) temp; isPrime[del] = false;
temp *= p; }
q = p + ;
while (q < N) {
while (!isPrime[q]) { q++; }
if (q >= N) { break;}
temp = (double) p;
temp *= q;
if (temp > N) break;
while (temp <= N) {
del = (int) temp;
isPrime[del] = false;
temp *= p;
}
q++;
}
p++;
}
pn = ;
for (int i = ; i <= N; i++) {
if (isPrime[i]) {
pt[pn++] = i;
}
}
} int modular_exp(int a, int b, int c) {
LL res, temp;
res = % c, temp = a % c;
while (b) {
if (b & ) {
res = res * temp % c;
}
temp = temp * temp % c;
b >>= ;
}
return (int) res;
} void getNums(int n) {
int x = * n;
int len = pn;
for (int i = ; i < len && pt[i] <= x; i++) {
int r = , a = x;
while (a) {
r += a / pt[i];
a /= pt[i];
}
num[i] = r;
}
x = n;
for (int i = ; i < len && pt[i] <= x; i++) {
int r = , a = x;
while (a) {
r += a / pt[i];
a /= pt[i];
}
num[i] -= r;
}
x = n + ;
for (int i = ; i < len && pt[i] <= x; i++) {
int r = , a = x;
while (a) {
r += a / pt[i];
a /= pt[i];
}
num[i] -= r;
}
} int main() {
#ifdef ON_LOCAL_DEBUG
freopen("data.in", "r", stdin);
// freopen("test.in", "r", stdin);
// freopen("data.out", "w", stdout);
#endif
int n, m;
init_prime_table();
while (scanf("%d%d", &n, &m) == ) {
getNums(n);
LL ans = ;
int n2 = * n;
for (int i = ; ans && (i < pn) && pt[i] <= n2; i++) {
if (num[i] > ) {
ans = ans * (LL) modular_exp(pt[i], num[i], m);
ans %= m;
}
}
printf("%d\n", (int)ans);
}
return ;
}
bjfu1238 卡特兰数取余的更多相关文章
- POJ 3070 + 51Nod 1242 大斐波那契数取余
POJ 3070 #include "iostream" #include "cstdio" using namespace std; class matrix ...
- hdoj 4828 卡特兰数取模
Grids Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others) Total Sub ...
- LightOJ-1214-Large Division-大数取余
Given two integers, a and b, you should check whether a is divisible by b or not. We know that an in ...
- 2014年百度之星程序设计大赛 - 初赛(第一轮) hdu Grids (卡特兰数 大数除法取余 扩展gcd)
题目链接 分析:打表以后就能发现时卡特兰数, 但是有除法取余. f[i] = f[i-1]*(4*i - 2)/(i+1); 看了一下网上的题解,照着题解写了下面的代码,不过还是不明白,为什么用扩展g ...
- HDU-4828 卡特兰数+带模除法
题意:给定2行n列的长方形,然后把1—2*n的数字填进方格内,保证每一行,每一列都是递增序列,求有几种放置方法,对1000000007取余: 思路:本来想用组合数找规律,但是找不出来,搜题解是卡特兰数 ...
- HDU 4828 Grids(卡特兰数+乘法逆元)
首先我按着我的理解说一下它为什么是卡特兰数,首先卡特兰数有一个很典型的应用就是求1~N个自然数出栈情况的种类数.而这里正好就对应了这种情况.我们要满足题目中给的条件,数字应该是从小到大放置的,1肯定在 ...
- 2017"百度之星"程序设计大赛 - 资格赛【1001 Floyd求最小环 1002 歪解(并查集),1003 完全背包 1004 01背包 1005 打表找规律+卡特兰数】
度度熊保护村庄 Accepts: 13 Submissions: 488 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3276 ...
- FZU 2098 刻苦的小芳(卡特兰数,动态规划)
Problem 2098 刻苦的小芳 Accept: 42 Submit: 70 Time Limit: 1000 mSec Memory Limit : 32768 KB Problem Descr ...
- HDU 6084 寻找母串(卡特兰数)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6084 [题目大意] 对于一个串S,当它同时满足如下条件时,它就是一个01偏串: 1.只由0和1两种 ...
随机推荐
- 2013年山东省第四届ACM大学生程序设计竞赛 Alice and Bob
Alice and Bob Time Limit: 1000ms Memory limit: 65536K 题目描述 Alice and Bob like playing games very ...
- lintcode:在二叉查找树中插入节点
题目: 在二叉查找树中插入节点 给定一棵二叉查找树和一个新的树节点,将节点插入到树中. 你需要保证该树仍然是一棵二叉查找树. 样例 给出如下一棵二叉查找树,在插入节点6之后这棵二叉查找树可以是这样 ...
- RN学习1——前奏,app插件化和热更新的探索
react_native_banner-min.png React Native(以下简称RN)有大量前端开发者的追捧.前端开发是一个活跃的社区,一直尝试着一统前后端,做一个全栈开发,RN就是他们在客 ...
- web服务器和应用服务器概念比较
转自:http://hi.baidu.com/lclkathy/blog/item/dae3be36763a47370b55a970.html 一 常见的WEB服务器和应用服务器 在UNIX和LINU ...
- IOS开发--上传图片
IOS图片上传功能实现总结 IOS图片上传主要分两种方式实现,一个是将图片信息以表单的形式上传,一种是将图片以JSON的格式上传. 首先要讲的是以这两个方式上传的一个比较明显的区别就是HTTP Hea ...
- Hibernate逍遥游记-第6章 通过Hibernate操纵对象(select-before-update)
1. 2. 3. 4. 5. 6. 7.
- 实用Photoshop快捷键
面板快捷键:shift+对应的快捷键调用同类工具 Ctrl + 点击面板------获取选取 Shift + F6-----------羽化 Alt + Delete---------填充前景色 Ct ...
- 《Linux/Unix系统编程手册》读书笔记1
<Linux/Unix系统编程手册>读书笔记 目录 最近这一个月在看<Linux/Unix系统编程手册>,在学习关于Linux的系统编程.之前学习Linux的时候就打算写关于L ...
- java导出excel报表
1.java导出excel报表: package cn.jcenterhome.util; import java.io.OutputStream;import java.util.List;impo ...
- ER模型到关系模型的转换规则
E-R模型向关系模型的转换规则: 一.两元联系的转换规则 (1)实体类型的转换 将每个实体类型转换成一个关系模式,实体的属性即为关系的属性,实体标识符即为关系的键. (2)联系类型的转换 a实体间的联 ...