bzoj 3143 [Hnoi2013]游走(贪心,高斯消元,期望方程)
【题目链接】
http://www.lydsy.com/JudgeOnline/problem.php?id=3143
【题意】
给定一个无向图,从1走到n,走过一条边得到的分数为边的标号,问一个边的标号方法,使得路径上得分最少。
【思路】
设f[i]表示经过i点的期望次数。有:
f[1]=1+sigma{ f[v] }
f[u]=sigma{ f[v] }
特别地,令f[n]=0,因为n点不会对任何连边做出贡献,于是记之为0。
于是得到了n个线性方程组,可以用高斯消元法求解。
对于一条边(u,v)的期望经过次数为:
e=f[u]/du[u] + f[v]/du[v]
du[u]为u点的度数。
然后对每条边贪心地赋值,期望经过次数越大地赋值越小。
【代码】
#include<set>
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define trav(u,i) for(int i=front[u];i;i=e[i].nxt)
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
using namespace std; typedef long long ll;
const int N = ;
const int M = N*N; ll read() {
char c=getchar();
ll f=,x=;
while(!isdigit(c)) {
if(c=='-') f=-; c=getchar();
}
while(isdigit(c))
x=x*+c-'',c=getchar();
return x*f;
} struct Edge {
int v,nxt;
}e[M];
int en=,front[N];
void adde(int u,int v)
{
e[++en]=(Edge){v,front[u]}; front[u]=en;
} int n,m,du[N],flag[N][N];
double ef[N],a[N][N]; int tot; void gause()
{
for(int i=;i<=n;i++)
{
int r=i;
for(int j=i+;j<=n;j++)
if(fabs(a[j][i])>fabs(a[r][i])) r=i;
if(r!=i) for(int j=;j<=n+;j++) swap(a[i][j],a[r][j]);
for(int j=n+;j>=i;j--)
for(int k=i+;k<=n;k++)
a[k][j]-=a[k][i]/a[i][i]*a[i][j];
}
for(int i=n;i;i--)
{
for(int j=i+;j<=n;j++)
a[i][n+]-=a[i][j]*a[j][n+];
a[i][n+]/=a[i][i];
}
} int main()
{
n=read(),m=read();
int u,v;
FOR(i,,m)
{
u=read(),v=read();
adde(u,v),adde(v,u);
du[u]++,du[v]++;
}
FOR(u,,n-)
{
if(u==) a[u][n]=;
a[u][u]=;
trav(u,i)
{
int v=e[i].v;
if(v!=n) a[u][v]-=1.0/du[v];
}
}
a[][n]=;
n--;
gause();
FOR(u,,n)
{
trav(u,i)
{
int v=e[i].v;
if(v!=u&&!flag[u][v])
ef[++tot]=a[u][n+]/du[u]+a[v][n+]/du[v],
flag[u][v]=flag[v][u]=;
}
}
sort(ef+,ef+tot+);
double ans=0.0;
FOR(i,,tot)
ans+=ef[i]*(tot-i+);
printf("%.3lf\n",ans);
return ;
}
bzoj 3143 [Hnoi2013]游走(贪心,高斯消元,期望方程)的更多相关文章
- bzoj 3143 [Hnoi2013]游走【高斯消元+dp】
参考:http://blog.csdn.net/vmurder/article/details/44542575 和2337有点像 设点u的经过期望(还是概率啊我也分不清,以下都分不清)为\( x[u ...
- [luogu3232 HNOI2013] 游走 (高斯消元 期望)
传送门 题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等 ...
- 洛谷P3232 [HNOI2013]游走(高斯消元+期望)
传送门 所以说我讨厌数学……期望不会高斯消元也不会……好不容易抄好了高斯消元板子被精度卡成琪露诺了…… 首先,我们先算出走每一条边的期望次数,那么为了最小化期望,就让大的期望次数乘上小编号 边的期望次 ...
- BZOJ3143 [Hnoi2013]游走 【高斯消元】
题目 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编 ...
- 【BZOJ3143】游走(高斯消元,数学期望)
[BZOJ3143]游走(高斯消元,数学期望) 题面 BZOJ 题解 首先,概率不会直接算... 所以来一个逼近法算概率 这样就可以求出每一条边的概率 随着走的步数的增多,答案越接近 (我卡到\(50 ...
- bzoj 3143: [Hnoi2013]游走 高斯消元
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1026 Solved: 448[Submit][Status] ...
- BZOJ 3143 HNOI2013 游走 高斯消元 期望
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...
- BZOJ 3143: [Hnoi2013]游走 概率与期望+高斯消元
Description 一个无向连通图,顶点从1编号到N,边从1编号到M.小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获 ...
- BZOJ.3143.[HNOI2013]游走(概率 期望 高斯消元)
题目链接 参考 远航之曲 把走每条边的概率乘上分配的标号就是它的期望,所以我们肯定是把大的编号分配给走的概率最低的边. 我们只要计算出经过所有点的概率,就可以得出经过一条边(\(u->v\))的 ...
- bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元
[Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3394 Solved: 1493[Submit][Status][Disc ...
随机推荐
- DOS命令 Net config server Net config workstation
DOS命令 Net config 作用:显示当前运行的可配置服务,或显示并修改某项服务的设置. 格式:net conifg service options 参数:(1)键入不带参数的net conif ...
- 68. Text Justification
题目: Given an array of words and a length L, format the text such that each line has exactly L charac ...
- ubuntu13.04下载android4.0.1源码过程
最初我参考的是老罗的博客http://blog.csdn.net/luoshengyang/article/details/6559955 进行下载安装的,但弄着弄着就发现不太对劲了.这里记录下详细过 ...
- proc_dir_entry
struct proc_dir_entry { unsigned int low_ino; unsigned short namelen; const cha ...
- Android UI学习 - FrameLayou和布局优化(viewstub)
原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://android.blog.51cto.com/268543/308090 Fram ...
- bzoj2535 2109
做过4010这题其实就水了 把图反向之后直接拓扑排序做即可,我们可以用链表来优化 每个航班的最小起飞序号就相当于在反向图中不用这个点最迟到哪 type node=record po,next:long ...
- PHPnow 升级后 PHP不支持GD、MySQL
来自http://tunps.com/php-unsupport-gd-and-mysql-after-upgrade-phpnow 最近磁盘格式化误操作后,最近两天都在忙于数据恢复,现在才恢复正常. ...
- Mysql 临时变量的 定义 和 赋值 Set 和 Into 赋值; Swith Mysql版本 Case When的用法
一:临时变量的定义和赋值 DECLARE spot SMALLINT; -- 分隔符的位置 DECLARE tempId VARCHAR(64); -- 循环 需要用到的临时的Cid DECLARE ...
- poj 1986 Distance Queries(LCA:倍增/离线)
计算树上的路径长度.input要去查poj 1984. 任意建一棵树,利用树形结构,将问题转化为u,v,lca(u,v)三个点到根的距离.输出d[u]+d[v]-2*d[lca(u,v)]. 倍增求解 ...
- 编译pure-ftpd时提示错误Your MySQL client libraries aren't properly installed
如果出现类似configure: error: Your MySQL client libraries aren’t properly installed 的错误,请将mysql目录下的 includ ...