Mike and Geometry Problem

题目链接:

http://acm.hust.edu.cn/vjudge/contest/121333#problem/I

Description

Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's define f([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that ). You are given two integers n and k and n closed intervals [li, ri] on OX axis and you have to find:

In other words, you should find the sum of the number of integer points in the intersection of any k of the segments.

As the answer may be very large, output it modulo 1000000007 (109 + 7).

Mike can't solve this problem so he needs your help. You will help him, won't you?

Input

The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.

Then n lines follow, the i-th line contains two integers li, ri( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.

Output

Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.

Sample Input

Input

3 2

1 2

1 3

2 3

Output

5

Input

3 3

1 3

1 3

1 3

Output

3

Input

3 1

1 2

2 3

3 4

Output

6

Hint

题意:

横轴上有n个区间,每次取其中的k个区间,记录区间交集所覆盖的整点;

问对于所有的区间取法,一共覆盖了多少次整点;

题解:

实际上先求出每个整点被多少个区间所覆盖;

假设某点被m条边覆盖,则C(m, k)即为该点一共被覆盖的次数;

(若 m < k 则说明不可能处于k个区间的交集区);

前提:离散化各点! Map[l]++; Map[r+1]--;

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <vector>
#define LL long long
#define eps 1e-8
#define maxn 201000
#define mod 1000000007
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std; int n;
LL k;
map<int,int> mp; LL x,y,gcd;
void ex_gcd(LL a,LL b)
{
if(!b) {x=1;y=0;gcd=a;}
else {ex_gcd(b,a%b);LL temp=x;x=y;y=temp-a/b*y;}
}
LL f1[maxn],f2[maxn];
/*分子n!,f[i]为(i!)%mod的值*/
void F1()
{
f1[0]=1;
for(int i=1;i<maxn;i++)
f1[i]=(f1[i-1]*i)%mod;
}
/*分母m!,f[i]为(1/i!)%mod的值--逆元*/
void F2()
{
f2[0]=1;
for(int i=1;i<maxn;i++)
{
ex_gcd(i,mod);while(x<0) {x+=mod;y-=i;}
f2[i]=(f2[i-1]*(x%mod))%mod;
}
}
LL C_m_n(LL m,LL n)
{
/*ans=m!/(m-n)!n!*/
LL ans=(((f1[m]*f2[m-n])%mod)*f2[n])%mod;
return ans;
} int main(int argc, char const *argv[])
{
//IN; F1(); F2();
while(scanf("%d %I64d",&n,&k) != EOF)
{
mp.clear();
for(int i=1; i<=n; i++) {
LL x,y; scanf("%I64d %I64d", &x,&y);
mp[x]++;
mp[y+1]--;
} LL last = 0;
LL ans = 0, cur = 0;
map<int,int>::iterator it;
for(it=mp.begin(); it!=mp.end(); it++) {
LL x = it->first, y = it->second;
if(cur >= k)
ans = (ans + C_m_n(cur, k)*(x-last)) % mod;
last = x;
cur += y;
} printf("%I64d\n", ans);
} return 0;
}

CodeForces 689E Mike and Geometry Problem (离散化+组合数)的更多相关文章

  1. CodeForces 689E Mike and Geometry Problem

    离散化,树状数组,组合数学. 这题的大致思路和$HDU$ $5700$一样.都是求区间交的问题.可以用树状数组维护一下. 这题的话只要计算每一个$i$被统计了几次,假设第$i$点被统计了$ans[i] ...

  2. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合

    E. Mike and Geometry Problem 题目连接: http://www.codeforces.com/contest/689/problem/E Description Mike ...

  3. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元

    E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes input ...

  4. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】

    任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...

  5. codeforces 689E E. Mike and Geometry Problem(组合数学)

    题目链接: E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes ...

  6. codeforces 361 E - Mike and Geometry Problem

    原题: Description Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him ...

  7. Codeforces 798C. Mike and gcd problem 模拟构造 数组gcd大于1

    C. Mike and gcd problem time limit per test: 2 seconds memory limit per test: 256 megabytes input: s ...

  8. 【算法系列学习】codeforces C. Mike and gcd problem

    C. Mike and gcd problem http://www.cnblogs.com/BBBob/p/6746721.html #include<iostream> #includ ...

  9. codeforces#410C Mike and gcd problem

    题目:Mike and gcd problem 题意:给一个序列a1到an ,如果gcd(a1,a2,...an)≠1,给一种操作,可以使ai和ai+1分别变为(ai+ai+1)和(ai-ai+1); ...

随机推荐

  1. kafka的环境搭建

    kafka是一个高吞吐量的消息系统.隔离消息接收和处理过程(可理解为一个缓存) 1.kafka伪分布的部署 1.1.下载并解压 1.2.启动zk bin/zookeeper-server-start. ...

  2. apk反编译(5)用apktool重新生成一个未签名的apk

    用apktool反编译apk后,得到一个目录,里面有smali文件,可以对其修改,然后用apktool重新生成一个未签名的apk. 如,把smali文件中的广告部分去掉或改成自己的. 命令如下:与破解 ...

  3. 客户视角:Oracle ETL工具ODI

    客户视角:Oracle ETL工具ODI 数据集成已成为企业在追求市场份额中的关键技术组件,与依靠手工编码的方式不同,越来越多的企业选择完整的数据集成解决方案来支持其IT战略,从大数据分析到云平台的集 ...

  4. Android studio中Rendering Problems不能可视化操作的解决办法

    出现:Rendering Problems the following classes could not be found:android.support.v7.internal.widget.Ac ...

  5. 1124. Mosaic(dfs)

    1124 需要想那么一点点吧 一个连通块中肯定不需要伸进手不拿的情况 不是一个肯定会需要这种情况 然后注意一点 sum=0的时候 就输出0就可以了 不要再减一了 #include <iostre ...

  6. CodeForces 489C (贪心) Given Length and Sum of Digits...

    题意: 找出m位且各个数位数字之和为s的最大和最小整数,不包括前导0(比如说003是非法的),但0是可以的. 分析: 这题是用贪心来做的,同样是m位数,前面的数字越大这个数就越大. 所以写一个can( ...

  7. jdom学习读取XML文件

    用JDOM读取XML文件需先用org.jdom.input.SAXBuilder对象的build()方法创建Document对象,然后用Document类.Element类等的方法读取所需的内容.IB ...

  8. Shell中取时间格式方法

    Shell中取时间格式方法2007-09-13 15:35常用date的显示格式: date +%F //2007-03-06date +%Y%m%d//20070306 date +%T //23: ...

  9. 【WEB小工具】BaseServlet—一个Servlet处理多个请求

    package cn.itcast.test.web.servlet; import java.io.IOException; import java.io.PrintWriter; import j ...

  10. xcode升级,报错 libxml/tree.h not found (Xcode4.6解决方案)

    转:http://blog.csdn.net/yangxuanlun/article/details/8639075 Xcode升级到4.6以后,他妈的,libxml/tree.h找不到了,搞了大半天 ...