CodeForces 689E Mike and Geometry Problem (离散化+组合数)
Mike and Geometry Problem
题目链接:
http://acm.hust.edu.cn/vjudge/contest/121333#problem/I
Description
Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's define f([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that ). You are given two integers n and k and n closed intervals [li, ri] on OX axis and you have to find:
In other words, you should find the sum of the number of integer points in the intersection of any k of the segments.
As the answer may be very large, output it modulo 1000000007 (109 + 7).
Mike can't solve this problem so he needs your help. You will help him, won't you?
Input
The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.
Then n lines follow, the i-th line contains two integers li, ri( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.
Output
Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.
Sample Input
Input
3 2
1 2
1 3
2 3
Output
5
Input
3 3
1 3
1 3
1 3
Output
3
Input
3 1
1 2
2 3
3 4
Output
6
Hint
题意:
横轴上有n个区间,每次取其中的k个区间,记录区间交集所覆盖的整点;
问对于所有的区间取法,一共覆盖了多少次整点;
题解:
实际上先求出每个整点被多少个区间所覆盖;
假设某点被m条边覆盖,则C(m, k)即为该点一共被覆盖的次数;
(若 m < k 则说明不可能处于k个区间的交集区);
前提:离散化各点! Map[l]++; Map[r+1]--;
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <vector>
#define LL long long
#define eps 1e-8
#define maxn 201000
#define mod 1000000007
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;
int n;
LL k;
map<int,int> mp;
LL x,y,gcd;
void ex_gcd(LL a,LL b)
{
if(!b) {x=1;y=0;gcd=a;}
else {ex_gcd(b,a%b);LL temp=x;x=y;y=temp-a/b*y;}
}
LL f1[maxn],f2[maxn];
/*分子n!,f[i]为(i!)%mod的值*/
void F1()
{
f1[0]=1;
for(int i=1;i<maxn;i++)
f1[i]=(f1[i-1]*i)%mod;
}
/*分母m!,f[i]为(1/i!)%mod的值--逆元*/
void F2()
{
f2[0]=1;
for(int i=1;i<maxn;i++)
{
ex_gcd(i,mod);while(x<0) {x+=mod;y-=i;}
f2[i]=(f2[i-1]*(x%mod))%mod;
}
}
LL C_m_n(LL m,LL n)
{
/*ans=m!/(m-n)!n!*/
LL ans=(((f1[m]*f2[m-n])%mod)*f2[n])%mod;
return ans;
}
int main(int argc, char const *argv[])
{
//IN;
F1(); F2();
while(scanf("%d %I64d",&n,&k) != EOF)
{
mp.clear();
for(int i=1; i<=n; i++) {
LL x,y; scanf("%I64d %I64d", &x,&y);
mp[x]++;
mp[y+1]--;
}
LL last = 0;
LL ans = 0, cur = 0;
map<int,int>::iterator it;
for(it=mp.begin(); it!=mp.end(); it++) {
LL x = it->first, y = it->second;
if(cur >= k)
ans = (ans + C_m_n(cur, k)*(x-last)) % mod;
last = x;
cur += y;
}
printf("%I64d\n", ans);
}
return 0;
}
CodeForces 689E Mike and Geometry Problem (离散化+组合数)的更多相关文章
- CodeForces 689E Mike and Geometry Problem
离散化,树状数组,组合数学. 这题的大致思路和$HDU$ $5700$一样.都是求区间交的问题.可以用树状数组维护一下. 这题的话只要计算每一个$i$被统计了几次,假设第$i$点被统计了$ans[i] ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合
E. Mike and Geometry Problem 题目连接: http://www.codeforces.com/contest/689/problem/E Description Mike ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元
E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes input ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】
任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...
- codeforces 689E E. Mike and Geometry Problem(组合数学)
题目链接: E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes ...
- codeforces 361 E - Mike and Geometry Problem
原题: Description Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him ...
- Codeforces 798C. Mike and gcd problem 模拟构造 数组gcd大于1
C. Mike and gcd problem time limit per test: 2 seconds memory limit per test: 256 megabytes input: s ...
- 【算法系列学习】codeforces C. Mike and gcd problem
C. Mike and gcd problem http://www.cnblogs.com/BBBob/p/6746721.html #include<iostream> #includ ...
- codeforces#410C Mike and gcd problem
题目:Mike and gcd problem 题意:给一个序列a1到an ,如果gcd(a1,a2,...an)≠1,给一种操作,可以使ai和ai+1分别变为(ai+ai+1)和(ai-ai+1); ...
随机推荐
- 在Ubuntu上为Android系统内置Java应用程序测试Application Frameworks层的硬件服务(老罗学习笔记6)
一:Eclipse下 1.创建工程: ---- 2.创建后目录 3.添加java函数 4.在src下创建package,在package下创建file 5.res---layout下创建xml文件,命 ...
- “LC.exe已退出,代码为-1错误”解决办法
有的时间,在项目中编辑运行以后,竟然出错了,错误提示就是: “LC.exe”已退出,代码为 -1. 具体解决方法如下: 因为证书的原因,把项目中“properties”目录下的“license.lic ...
- enum,struct,union类型使用和长度
VC,C++ Builder和lcc三个编译器 间枚举类型enum长度的情况. 各种C编译器默认的字节对齐数不一致,要写通用的代码,经常就是使用 #pragma pack(1) ... #pragma ...
- Junit单元测试的实例
进行单元测试的代码 package JunitTest; import org.junit.Test; public class Calculator { private static int res ...
- hdu 4937 Lucky Number
虽然算法清晰的不能再清晰,但是实现总是边角料错这错那. 题目大意: 给出n,找出一些进制,使得n在该进制下仅为3,4,5,6表示 解题思路: 首先,4-10000进制直接枚举计算出每一位 此外,最多只 ...
- ACM - ICPC World Finals 2013 C Surely You Congest
原题下载:http://icpc.baylor.edu/download/worldfinals/problems/icpc2013.pdf 题目翻译: 试题来源 ACM/ICPC World Fin ...
- 基于XMPP的即时通信系统的建立(一)— XMPP基础概念
相关背景 IM(Instant Messaging)正在被广泛使用,特别是公司与它们的客户互动连接方案以及互联网与Web2.0相关的应用.为了解决即时通信的标准问题,IETF(互联网工程任务组 The ...
- pinyin4j使用示例
pinyin4j的主页:http://pinyin4j.sourceforge.net/pinyin4j能够根据中文字符获取其对应的拼音,而且拼音的格式可以定制pinyin4j是一个支持将中文转换到拼 ...
- 基于AJAX的长轮询(long-polling)方式实现简单的聊天室程序
原理: 可以看:http://yiminghe.javaeye.com/blog/294781 AJAX 的出现使得 JavaScript 可以调用 XMLHttpRequest 对象发出 HTTP ...
- android开发调用c++共享库so文件
1.编写libaab.cpp #include <stdio.h>#include <stdlib.h> #ifdef __cplusplusextern "C&qu ...