CodeForces 689E Mike and Geometry Problem (离散化+组合数)
Mike and Geometry Problem
题目链接:
http://acm.hust.edu.cn/vjudge/contest/121333#problem/I
Description
Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's define f([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that ). You are given two integers n and k and n closed intervals [li, ri] on OX axis and you have to find:
In other words, you should find the sum of the number of integer points in the intersection of any k of the segments.
As the answer may be very large, output it modulo 1000000007 (109 + 7).
Mike can't solve this problem so he needs your help. You will help him, won't you?
Input
The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.
Then n lines follow, the i-th line contains two integers li, ri( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.
Output
Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.
Sample Input
Input
3 2
1 2
1 3
2 3
Output
5
Input
3 3
1 3
1 3
1 3
Output
3
Input
3 1
1 2
2 3
3 4
Output
6
Hint
题意:
横轴上有n个区间,每次取其中的k个区间,记录区间交集所覆盖的整点;
问对于所有的区间取法,一共覆盖了多少次整点;
题解:
实际上先求出每个整点被多少个区间所覆盖;
假设某点被m条边覆盖,则C(m, k)即为该点一共被覆盖的次数;
(若 m < k 则说明不可能处于k个区间的交集区);
前提:离散化各点! Map[l]++; Map[r+1]--;
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <vector>
#define LL long long
#define eps 1e-8
#define maxn 201000
#define mod 1000000007
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;
int n;
LL k;
map<int,int> mp;
LL x,y,gcd;
void ex_gcd(LL a,LL b)
{
if(!b) {x=1;y=0;gcd=a;}
else {ex_gcd(b,a%b);LL temp=x;x=y;y=temp-a/b*y;}
}
LL f1[maxn],f2[maxn];
/*分子n!,f[i]为(i!)%mod的值*/
void F1()
{
f1[0]=1;
for(int i=1;i<maxn;i++)
f1[i]=(f1[i-1]*i)%mod;
}
/*分母m!,f[i]为(1/i!)%mod的值--逆元*/
void F2()
{
f2[0]=1;
for(int i=1;i<maxn;i++)
{
ex_gcd(i,mod);while(x<0) {x+=mod;y-=i;}
f2[i]=(f2[i-1]*(x%mod))%mod;
}
}
LL C_m_n(LL m,LL n)
{
/*ans=m!/(m-n)!n!*/
LL ans=(((f1[m]*f2[m-n])%mod)*f2[n])%mod;
return ans;
}
int main(int argc, char const *argv[])
{
//IN;
F1(); F2();
while(scanf("%d %I64d",&n,&k) != EOF)
{
mp.clear();
for(int i=1; i<=n; i++) {
LL x,y; scanf("%I64d %I64d", &x,&y);
mp[x]++;
mp[y+1]--;
}
LL last = 0;
LL ans = 0, cur = 0;
map<int,int>::iterator it;
for(it=mp.begin(); it!=mp.end(); it++) {
LL x = it->first, y = it->second;
if(cur >= k)
ans = (ans + C_m_n(cur, k)*(x-last)) % mod;
last = x;
cur += y;
}
printf("%I64d\n", ans);
}
return 0;
}
CodeForces 689E Mike and Geometry Problem (离散化+组合数)的更多相关文章
- CodeForces 689E Mike and Geometry Problem
离散化,树状数组,组合数学. 这题的大致思路和$HDU$ $5700$一样.都是求区间交的问题.可以用树状数组维护一下. 这题的话只要计算每一个$i$被统计了几次,假设第$i$点被统计了$ans[i] ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合
E. Mike and Geometry Problem 题目连接: http://www.codeforces.com/contest/689/problem/E Description Mike ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元
E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes input ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】
任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...
- codeforces 689E E. Mike and Geometry Problem(组合数学)
题目链接: E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes ...
- codeforces 361 E - Mike and Geometry Problem
原题: Description Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him ...
- Codeforces 798C. Mike and gcd problem 模拟构造 数组gcd大于1
C. Mike and gcd problem time limit per test: 2 seconds memory limit per test: 256 megabytes input: s ...
- 【算法系列学习】codeforces C. Mike and gcd problem
C. Mike and gcd problem http://www.cnblogs.com/BBBob/p/6746721.html #include<iostream> #includ ...
- codeforces#410C Mike and gcd problem
题目:Mike and gcd problem 题意:给一个序列a1到an ,如果gcd(a1,a2,...an)≠1,给一种操作,可以使ai和ai+1分别变为(ai+ai+1)和(ai-ai+1); ...
随机推荐
- ConcurrentDictionary和Dictionary
http://stackoverflow.com/questions/6739193/is-the-concurrentdictionary-thread-safe-to-the-point-that ...
- Awesome Javascript(中文翻译版)
[导读]:GitHub 上有一个 Awesome – XXX 系列的资源整理.awesome-javascript 是 sorrycc 发起维护的 JS 资源列表,内容包括:包管理器.加载器.测试框架 ...
- BZOJ_1030_[JSOI2007]_文本生成器_(AC自动机+DP)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1030 给出一些单词,问长度为\(m\)的文章有多少文章中出现过任意一个或多个单词. 分析 文章 ...
- 完全二叉树的高度为什么是对lgN向下取整
完全二叉树的高度为什么是对lgN向下取整呢? 说明一下这里的高度:只有根节点的树高度是0. 设一棵完全二叉树节点个数为N,高度为h.所以总节点个数N满足以下不等式: 1 + 21 + 22 +……+ ...
- QPS、PV和需要部署机器数量计算公式(转)
术语说明: QPS = req/sec = 请求数/秒 [QPS计算PV和机器的方式] QPS统计方式 [一般使用 http_load 进行统计] QPS = 总请求数 / ( 进程总数 * 请求 ...
- Java [Leetcode 58]Length of Last Word
题目描述: Given a string s consists of upper/lower-case alphabets and empty space characters ' ', return ...
- vc/mfc获取rgb图像数据后动态显示及保存图片的方法
vc/mfc获取rgb图像数据后动态显示及保存图片的方法 该情况可用于视频通信中获取的位图数据回放显示或显示摄像头捕获的本地图像 第一种方法 #include<vfw.h> 加载 vfw3 ...
- 【Unity3D】生成工程报错解决—UnityEditor.HostView:OnGUI() Error building Player: Couldn't build player because of unsupported data on target platform.
错误 错误1:An asset is marked as dont save, but is included in the build: unityEditor.HostView:OnGUI() 错 ...
- 常用的PL/SQL开发原则
(1)广泛使用绑定变量,特别是批量绑定,因为这可以有效的避免sql的硬解析和PL/SQL引擎和SQL引擎的上下文切换!(2)广泛使用UROWID来处理DML语句(UROWID是ROWID扩展,ORAC ...
- Linux下通过ioctl系统调用来获取和设置网络信息
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h&g ...