CodeForces 689E Mike and Geometry Problem (离散化+组合数)
Mike and Geometry Problem
题目链接:
http://acm.hust.edu.cn/vjudge/contest/121333#problem/I
Description
Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's define f([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that ). You are given two integers n and k and n closed intervals [li, ri] on OX axis and you have to find:
In other words, you should find the sum of the number of integer points in the intersection of any k of the segments.
As the answer may be very large, output it modulo 1000000007 (109 + 7).
Mike can't solve this problem so he needs your help. You will help him, won't you?
Input
The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.
Then n lines follow, the i-th line contains two integers li, ri( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.
Output
Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.
Sample Input
Input
3 2
1 2
1 3
2 3
Output
5
Input
3 3
1 3
1 3
1 3
Output
3
Input
3 1
1 2
2 3
3 4
Output
6
Hint
题意:
横轴上有n个区间,每次取其中的k个区间,记录区间交集所覆盖的整点;
问对于所有的区间取法,一共覆盖了多少次整点;
题解:
实际上先求出每个整点被多少个区间所覆盖;
假设某点被m条边覆盖,则C(m, k)即为该点一共被覆盖的次数;
(若 m < k 则说明不可能处于k个区间的交集区);
前提:离散化各点! Map[l]++; Map[r+1]--;
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <vector>
#define LL long long
#define eps 1e-8
#define maxn 201000
#define mod 1000000007
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;
int n;
LL k;
map<int,int> mp;
LL x,y,gcd;
void ex_gcd(LL a,LL b)
{
if(!b) {x=1;y=0;gcd=a;}
else {ex_gcd(b,a%b);LL temp=x;x=y;y=temp-a/b*y;}
}
LL f1[maxn],f2[maxn];
/*分子n!,f[i]为(i!)%mod的值*/
void F1()
{
f1[0]=1;
for(int i=1;i<maxn;i++)
f1[i]=(f1[i-1]*i)%mod;
}
/*分母m!,f[i]为(1/i!)%mod的值--逆元*/
void F2()
{
f2[0]=1;
for(int i=1;i<maxn;i++)
{
ex_gcd(i,mod);while(x<0) {x+=mod;y-=i;}
f2[i]=(f2[i-1]*(x%mod))%mod;
}
}
LL C_m_n(LL m,LL n)
{
/*ans=m!/(m-n)!n!*/
LL ans=(((f1[m]*f2[m-n])%mod)*f2[n])%mod;
return ans;
}
int main(int argc, char const *argv[])
{
//IN;
F1(); F2();
while(scanf("%d %I64d",&n,&k) != EOF)
{
mp.clear();
for(int i=1; i<=n; i++) {
LL x,y; scanf("%I64d %I64d", &x,&y);
mp[x]++;
mp[y+1]--;
}
LL last = 0;
LL ans = 0, cur = 0;
map<int,int>::iterator it;
for(it=mp.begin(); it!=mp.end(); it++) {
LL x = it->first, y = it->second;
if(cur >= k)
ans = (ans + C_m_n(cur, k)*(x-last)) % mod;
last = x;
cur += y;
}
printf("%I64d\n", ans);
}
return 0;
}
CodeForces 689E Mike and Geometry Problem (离散化+组合数)的更多相关文章
- CodeForces 689E Mike and Geometry Problem
离散化,树状数组,组合数学. 这题的大致思路和$HDU$ $5700$一样.都是求区间交的问题.可以用树状数组维护一下. 这题的话只要计算每一个$i$被统计了几次,假设第$i$点被统计了$ans[i] ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合
E. Mike and Geometry Problem 题目连接: http://www.codeforces.com/contest/689/problem/E Description Mike ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元
E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes input ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】
任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...
- codeforces 689E E. Mike and Geometry Problem(组合数学)
题目链接: E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes ...
- codeforces 361 E - Mike and Geometry Problem
原题: Description Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him ...
- Codeforces 798C. Mike and gcd problem 模拟构造 数组gcd大于1
C. Mike and gcd problem time limit per test: 2 seconds memory limit per test: 256 megabytes input: s ...
- 【算法系列学习】codeforces C. Mike and gcd problem
C. Mike and gcd problem http://www.cnblogs.com/BBBob/p/6746721.html #include<iostream> #includ ...
- codeforces#410C Mike and gcd problem
题目:Mike and gcd problem 题意:给一个序列a1到an ,如果gcd(a1,a2,...an)≠1,给一种操作,可以使ai和ai+1分别变为(ai+ai+1)和(ai-ai+1); ...
随机推荐
- kafka的环境搭建
kafka是一个高吞吐量的消息系统.隔离消息接收和处理过程(可理解为一个缓存) 1.kafka伪分布的部署 1.1.下载并解压 1.2.启动zk bin/zookeeper-server-start. ...
- apk反编译(5)用apktool重新生成一个未签名的apk
用apktool反编译apk后,得到一个目录,里面有smali文件,可以对其修改,然后用apktool重新生成一个未签名的apk. 如,把smali文件中的广告部分去掉或改成自己的. 命令如下:与破解 ...
- 客户视角:Oracle ETL工具ODI
客户视角:Oracle ETL工具ODI 数据集成已成为企业在追求市场份额中的关键技术组件,与依靠手工编码的方式不同,越来越多的企业选择完整的数据集成解决方案来支持其IT战略,从大数据分析到云平台的集 ...
- Android studio中Rendering Problems不能可视化操作的解决办法
出现:Rendering Problems the following classes could not be found:android.support.v7.internal.widget.Ac ...
- 1124. Mosaic(dfs)
1124 需要想那么一点点吧 一个连通块中肯定不需要伸进手不拿的情况 不是一个肯定会需要这种情况 然后注意一点 sum=0的时候 就输出0就可以了 不要再减一了 #include <iostre ...
- CodeForces 489C (贪心) Given Length and Sum of Digits...
题意: 找出m位且各个数位数字之和为s的最大和最小整数,不包括前导0(比如说003是非法的),但0是可以的. 分析: 这题是用贪心来做的,同样是m位数,前面的数字越大这个数就越大. 所以写一个can( ...
- jdom学习读取XML文件
用JDOM读取XML文件需先用org.jdom.input.SAXBuilder对象的build()方法创建Document对象,然后用Document类.Element类等的方法读取所需的内容.IB ...
- Shell中取时间格式方法
Shell中取时间格式方法2007-09-13 15:35常用date的显示格式: date +%F //2007-03-06date +%Y%m%d//20070306 date +%T //23: ...
- 【WEB小工具】BaseServlet—一个Servlet处理多个请求
package cn.itcast.test.web.servlet; import java.io.IOException; import java.io.PrintWriter; import j ...
- xcode升级,报错 libxml/tree.h not found (Xcode4.6解决方案)
转:http://blog.csdn.net/yangxuanlun/article/details/8639075 Xcode升级到4.6以后,他妈的,libxml/tree.h找不到了,搞了大半天 ...