Mike and Geometry Problem

题目链接:

http://acm.hust.edu.cn/vjudge/contest/121333#problem/I

Description

Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's define f([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that ). You are given two integers n and k and n closed intervals [li, ri] on OX axis and you have to find:

In other words, you should find the sum of the number of integer points in the intersection of any k of the segments.

As the answer may be very large, output it modulo 1000000007 (109 + 7).

Mike can't solve this problem so he needs your help. You will help him, won't you?

Input

The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.

Then n lines follow, the i-th line contains two integers li, ri( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.

Output

Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.

Sample Input

Input

3 2

1 2

1 3

2 3

Output

5

Input

3 3

1 3

1 3

1 3

Output

3

Input

3 1

1 2

2 3

3 4

Output

6

Hint

题意:

横轴上有n个区间,每次取其中的k个区间,记录区间交集所覆盖的整点;

问对于所有的区间取法,一共覆盖了多少次整点;

题解:

实际上先求出每个整点被多少个区间所覆盖;

假设某点被m条边覆盖,则C(m, k)即为该点一共被覆盖的次数;

(若 m < k 则说明不可能处于k个区间的交集区);

前提:离散化各点! Map[l]++; Map[r+1]--;

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <vector>
#define LL long long
#define eps 1e-8
#define maxn 201000
#define mod 1000000007
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std; int n;
LL k;
map<int,int> mp; LL x,y,gcd;
void ex_gcd(LL a,LL b)
{
if(!b) {x=1;y=0;gcd=a;}
else {ex_gcd(b,a%b);LL temp=x;x=y;y=temp-a/b*y;}
}
LL f1[maxn],f2[maxn];
/*分子n!,f[i]为(i!)%mod的值*/
void F1()
{
f1[0]=1;
for(int i=1;i<maxn;i++)
f1[i]=(f1[i-1]*i)%mod;
}
/*分母m!,f[i]为(1/i!)%mod的值--逆元*/
void F2()
{
f2[0]=1;
for(int i=1;i<maxn;i++)
{
ex_gcd(i,mod);while(x<0) {x+=mod;y-=i;}
f2[i]=(f2[i-1]*(x%mod))%mod;
}
}
LL C_m_n(LL m,LL n)
{
/*ans=m!/(m-n)!n!*/
LL ans=(((f1[m]*f2[m-n])%mod)*f2[n])%mod;
return ans;
} int main(int argc, char const *argv[])
{
//IN; F1(); F2();
while(scanf("%d %I64d",&n,&k) != EOF)
{
mp.clear();
for(int i=1; i<=n; i++) {
LL x,y; scanf("%I64d %I64d", &x,&y);
mp[x]++;
mp[y+1]--;
} LL last = 0;
LL ans = 0, cur = 0;
map<int,int>::iterator it;
for(it=mp.begin(); it!=mp.end(); it++) {
LL x = it->first, y = it->second;
if(cur >= k)
ans = (ans + C_m_n(cur, k)*(x-last)) % mod;
last = x;
cur += y;
} printf("%I64d\n", ans);
} return 0;
}

CodeForces 689E Mike and Geometry Problem (离散化+组合数)的更多相关文章

  1. CodeForces 689E Mike and Geometry Problem

    离散化,树状数组,组合数学. 这题的大致思路和$HDU$ $5700$一样.都是求区间交的问题.可以用树状数组维护一下. 这题的话只要计算每一个$i$被统计了几次,假设第$i$点被统计了$ans[i] ...

  2. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合

    E. Mike and Geometry Problem 题目连接: http://www.codeforces.com/contest/689/problem/E Description Mike ...

  3. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元

    E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes input ...

  4. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】

    任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...

  5. codeforces 689E E. Mike and Geometry Problem(组合数学)

    题目链接: E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes ...

  6. codeforces 361 E - Mike and Geometry Problem

    原题: Description Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him ...

  7. Codeforces 798C. Mike and gcd problem 模拟构造 数组gcd大于1

    C. Mike and gcd problem time limit per test: 2 seconds memory limit per test: 256 megabytes input: s ...

  8. 【算法系列学习】codeforces C. Mike and gcd problem

    C. Mike and gcd problem http://www.cnblogs.com/BBBob/p/6746721.html #include<iostream> #includ ...

  9. codeforces#410C Mike and gcd problem

    题目:Mike and gcd problem 题意:给一个序列a1到an ,如果gcd(a1,a2,...an)≠1,给一种操作,可以使ai和ai+1分别变为(ai+ai+1)和(ai-ai+1); ...

随机推荐

  1. 在Ubuntu上为Android系统内置Java应用程序测试Application Frameworks层的硬件服务(老罗学习笔记6)

    一:Eclipse下 1.创建工程: ---- 2.创建后目录 3.添加java函数 4.在src下创建package,在package下创建file 5.res---layout下创建xml文件,命 ...

  2. “LC.exe已退出,代码为-1错误”解决办法

    有的时间,在项目中编辑运行以后,竟然出错了,错误提示就是: “LC.exe”已退出,代码为 -1. 具体解决方法如下: 因为证书的原因,把项目中“properties”目录下的“license.lic ...

  3. enum,struct,union类型使用和长度

    VC,C++ Builder和lcc三个编译器 间枚举类型enum长度的情况. 各种C编译器默认的字节对齐数不一致,要写通用的代码,经常就是使用 #pragma pack(1) ... #pragma ...

  4. Junit单元测试的实例

    进行单元测试的代码 package JunitTest; import org.junit.Test; public class Calculator { private static int res ...

  5. hdu 4937 Lucky Number

    虽然算法清晰的不能再清晰,但是实现总是边角料错这错那. 题目大意: 给出n,找出一些进制,使得n在该进制下仅为3,4,5,6表示 解题思路: 首先,4-10000进制直接枚举计算出每一位 此外,最多只 ...

  6. ACM - ICPC World Finals 2013 C Surely You Congest

    原题下载:http://icpc.baylor.edu/download/worldfinals/problems/icpc2013.pdf 题目翻译: 试题来源 ACM/ICPC World Fin ...

  7. 基于XMPP的即时通信系统的建立(一)— XMPP基础概念

    相关背景 IM(Instant Messaging)正在被广泛使用,特别是公司与它们的客户互动连接方案以及互联网与Web2.0相关的应用.为了解决即时通信的标准问题,IETF(互联网工程任务组 The ...

  8. pinyin4j使用示例

    pinyin4j的主页:http://pinyin4j.sourceforge.net/pinyin4j能够根据中文字符获取其对应的拼音,而且拼音的格式可以定制pinyin4j是一个支持将中文转换到拼 ...

  9. 基于AJAX的长轮询(long-polling)方式实现简单的聊天室程序

    原理: 可以看:http://yiminghe.javaeye.com/blog/294781 AJAX 的出现使得 JavaScript 可以调用 XMLHttpRequest 对象发出 HTTP ...

  10. android开发调用c++共享库so文件

    1.编写libaab.cpp #include <stdio.h>#include <stdlib.h> #ifdef __cplusplusextern "C&qu ...