题目描述

Informatik verbindet dich und mich.
信息将你我连结。
B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数。一共有m个操作,可以分为两种:0 l r表示将第l个到第r个数(al,al+1,...,ar)中的每一个数ai替换为c^ai,即c的ai次方,其中c是输入的一个常数,也就是执行赋值ai=c^ai1 l r求第l个到第r个数的和,也就是输出:sigma(ai),l<=i<=rai因为这个结果可能会很大,所以你只需要输出结果mod p的值即可。

输入

第一行有三个整数n,m,p,c,所有整数含义见问题描述。
接下来一行n个整数,表示a数组的初始值。
接下来m行,每行三个整数,其中第一个整数表示了操作的类型。
如果是0的话,表示这是一个修改操作,操作的参数为l,r。
如果是1的话,表示这是一个询问操作,操作的参数为l,r。
1 ≤ n ≤ 50000, 1 ≤ m ≤ 50000, 1 ≤ p ≤ 100000000, 0 < c <p, 0 ≤ ai < p

输出

对于每个询问操作,输出一行,包括一个整数表示答案mod p的值。

样例输入

4 4 7 2
1 2 3 4
0 1 4
1 2 4
0 1 4
1 1 3

样例输出

0
3


题解

扩展欧拉定理+并查集+树状数组

扩展欧拉定理:

通过各种证明可以得知,一个数n最多进行 log p 次操作后就会变为一个定值。

我们先预处理出成为定值的步数,不断求欧拉函数,记录每次变成了什么数,直至p=1.

此时需要继续迭代一层,作用后面讲。

然后再用递推法预处理出c...^ai(j个c) mod phi...(p)(k个phi),按照公式用三维数组储存。

这里需要注意:扩展欧拉定理仅在n≥phi(p)时成立,当n<phi(p)时,对应的解决方法就是不加等式右面phi(p)的一项(变成一个类似恒等式的东西)

这时需要在求幂次的同时记录一下是否超过了phi(p),即判断两数相乘时是否超过phi(p)。

这样预处理后可以开始处理操作了。

用一个数组记录一下每个数操作了多少次,如果达到了能够使值不变的次数,则不再进行更新。而对于操作中的所有数暴力修改即可。

因此需要一个数据结构,维护某一个数的下一个不能够使值不变(即操作次数没有达到某值)的数是什么。这个可以使用并查集来实现。

然后由于要求和,所以再使用一个树状数组来维护前缀和。

至于为什么求phi时要多迭代一项,具体原因比较复杂:

先看一个例子:n=1,p=3,c=2,a[1]=0时,正解为0、1、2、1、1...,而错解为0、1、2、2、2...

Why?这需要我们做这道题的根本思路。

迭代至phi=1,是因为x%1=0。因此20≡0(mod 1)。

如果按照错解的思路,下一步进行22^0 mod 1 mod 2=20 mod 1 mod 2,进而22^0 mod 1+1 mod 2=20 mod 1+1 mod 2

看起来似乎很对,但是仔细想想可以观察到:0<1,不能按照扩展欧拉定理加上phi的一项!。

所以应当是22^0 mod 1+1 mod 2=20 mod 1 mod 2,而这是不成立的。

so,仅仅迭代到1是错误的,而多迭代一项(或特判)就能解决该问题。

最后,总时间复杂度是O(nlognlog^2p),会TLE,究其原因是快速幂的logp的时间复杂度,具体优化方法:我们可以预处理出c^i mod phi...(p)和c^10000j mod phi...(p),然后找前半部分和后半部分。这样可以O(1)得到c的幂次。就能A了。

#include <cstdio>
#include <algorithm>
#define N 50010
using namespace std;
typedef long long ll;
int n , m , cnt[N] , tot;
ll p , c , a[N] , sum[N] , fa[N] , base[30] , v[N][30][30] , pf[N][30] , pg[N][30];
bool flag[N][30][30] , bf[N][30] , bg[N][30];
ll pow(int y , int k , bool &flag)
{
int tf = y % 10000 , tg = y / 10000;
flag = bf[tf][k] | bg[tg][k] | (pf[tf][k] * pg[tg][k] >= base[k]);
return pf[tf][k] * pg[tg][k] % base[k];
}
ll phi(ll x)
{
ll i , ans = x;
for(i = 2 ; i * i <= x ; i ++ )
{
if(x % i == 0)
{
ans = ans / i * (i - 1);
while(x % i == 0) x /= i;
}
}
if(x != 1) ans = ans / x * (x - 1);
return ans;
}
void update(int x , ll a)
{
int i;
for(i = x ; i <= n ; i += i & -i) sum[i] = (sum[i] + a) % p;
}
ll query(int x)
{
int i;
ll ans = 0;
for(i = x ; i ; i -= i & -i) ans = (ans + sum[i]) % p;
return ans;
}
void init()
{
int i , j , k;
for(i = 0 ; i <= tot ; i ++ )
{
pf[0][i] = 1;
for(j = 1 ; j <= 10000 ; j ++ )
bf[j][i] = bf[j - 1][i] | (pf[j - 1][i] * c >= base[i]) , pf[j][i] = pf[j - 1][i] * c % base[i];
pg[0][i] = 1 , pg[1][i] = pf[10000][i] , bg[1][i] = bf[10000][i];
for(j = 2 ; j <= 10000 ; j ++ )
bg[j][i] = bg[j - 1][i] | (pg[j - 1][i] * pg[1][i] >= base[i]) , pg[j][i] = pg[j - 1][i] * pg[1][i] % base[i];
}
for(i = 1 ; i <= n ; i ++ )
{
for(j = 0 ; j <= tot ; j ++ ) flag[i][0][j] = (a[i] >= base[j]) , v[i][0][j] = a[i] % base[j];
for(j = 1 ; j <= tot ; j ++ )
for(k = 0 ; k <= tot - j ; k ++ )
v[i][j][k] = pow(v[i][j - 1][k + 1] + (flag[i][j - 1][k + 1] ? base[k + 1] : 0) , k , flag[i][j][k]);
}
}
int find(int x)
{
return x == fa[x] ? x : fa[x] = find(fa[x]);
}
int main()
{
int i , opt , l , r;
scanf("%d%d%lld%lld" , &n , &m , &p , &c);
base[0] = p;
while(base[tot] != 1) tot ++ , base[tot] = phi(base[tot - 1]);
base[++tot] = 1;
for(i = 1 ; i <= n ; i ++ ) scanf("%lld" , &a[i]) , update(i , a[i]);
init();
for(i = 1 ; i <= n + 1 ; i ++ ) fa[i] = i;
while(m -- )
{
scanf("%d%d%d" , &opt , &l , &r);
if(opt == 0)
{
for(i = find(l) ; i <= r ; i = find(i + 1))
{
update(i , -v[i][cnt[i]][0]) , cnt[i] ++ , update(i , v[i][cnt[i]][0]);
if(cnt[i] == tot) fa[i] = find(i + 1);
}
}
else printf("%lld\n" , (query(r) - query(l - 1) + 2 * p) % p);
}
return 0;
}

【bzoj4869】[Shoi2017]相逢是问候 扩展欧拉定理+并查集+树状数组的更多相关文章

  1. bzoj 4869: [Shoi2017]相逢是问候 [扩展欧拉定理 线段树]

    4869: [Shoi2017]相逢是问候 题意:一个序列,支持区间\(a_i \leftarrow c^{a_i}\),区间求和.在模p意义下. 类似于开根操作,每次取phi在log次后就不变了. ...

  2. bzoj4869: [Shoi2017]相逢是问候(欧拉函数+线段树)

    这题是六省联考的...据说数据还出了点锅,心疼六省选手QAQ 首先要知道扩展欧拉定理... 可以发现每次区间操作都会使模数进行一次phi操作,而一个数最多取logp次phi就会变成1,这时后面的指数就 ...

  3. BZOJ4869 [Shoi2017]相逢是问候 【扩展欧拉定理 + 线段树】

    题目链接 BZOJ4869 题解 这题调得我怀疑人生,,结果就是因为某些地方\(sb\)地忘了取模 前置题目:BZOJ3884 扩展欧拉定理: \[c^a \equiv c^{a \mod \varp ...

  4. [LNOI] 相逢是问候 || 扩展欧拉函数+线段树

    原题为2017六省联考的D1T3 给出一个序列,m次操作,模数p和参数c 操作分为两种: 1.将[l,r]区间内的每个数x变为\(c^x\) 2.求[l,r]区间内数的和%p 首先,我们要了解一些数论 ...

  5. Bzoj4869: [Shoi2017]相逢是问候

    题面 传送门 Sol 摆定理 \[ a^b\equiv \begin{cases} a^{b\%\phi(p)}~~~~~~~~~~~gcd(a,p)=1\\ a^b~~~~~~~~~~~~~~~~~ ...

  6. 【BZOJ4869】相逢是问候(线段树,欧拉定理)

    [BZOJ4869]相逢是问候(线段树,欧拉定理) 题面 BZOJ 题解 根据欧拉定理递归计算(类似上帝与集合的正确用法) 所以我们可以用线段树维护区间最少的被更新的多少次 如果超过了\(\varph ...

  7. BZOJ:4869: [Shoi2017]相逢是问候

    4869: [Shoi2017]相逢是问候 先说点正经的…… 显然做了有限次(我只知道是有限次,而且不会大,别人说是log次?)修改以后会达到不动点,即以后怎么修改都不变了. 然后就随便做了.(3个l ...

  8. 牛客练习赛22-E.简单数据结构1(扩展欧拉定理降幂 +树状数组)

    链接:E.简单数据结构1 题意: 给一个长为n的序列,m次操作,每次操作: 1.区间加 2.对于区间,查询 ,一直到- 请注意每次的模数不同.   题解:扩展欧拉定理降幂 对一个数p取log(p)次的 ...

  9. NOJ——1669xor的难题(详细的树状数组扩展—异或求和)

    [1669] xor的难题 时间限制: 1000 ms 内存限制: 65535 K 问题描述 最近Alex学长有个问题被困扰了很久,就是有同学给他n个数,然后给你m个查询,然后每个查询给你l和r(左下 ...

随机推荐

  1. opencv approxPolyDP使用

    代码: import cv2 import numpy as np # img = cv2.imread('/home/sensetime/edgeBoxes-Cpp-version/output/i ...

  2. 使用ASP.NET Web API和Web API Client Gen使Angular 2应用程序的开发更加高效

    本文介绍“ 为ASP.NET Web API生成TypeScript客户端API ”,重点介绍Angular 2+代码示例和各自的SDLC.如果您正在开发.NET Core Web API后端,则可能 ...

  3. 学习sqlserver的函数方法

    http://www.w3school.com.cn/sql/func_datediff.asp SQL Server DATEDIFF() 函数 SELECT DATEDIFF(day,'2008- ...

  4. 安装配置eclipse的图文步骤

    装eclipse 之前要确定自己是否已经安装了java开发环境JDK,JDK的版本64位要下载Eclipse版本64位:JDK32位,要下载Eclipse32位. 一.去eclipse官网下载ecli ...

  5. linux下/dev/null被误删

    /dev/null文件是一个特殊的设备文件,可以用于清空一些日志文件,或者是使一些信息输出到此文件,用以节省硬盘空间.如果该空文件/dev/null文件被误删除掉, 如何再使用系统命令重新创建并设置该 ...

  6. 项目实战8.2-Linux下Tomcat开启查看GC信息

    本文收录在Linux运维企业架构实战系列 转自https://www.cnblogs.com/along21/ 一.开启GC日志 1.在Tomcat 的安装路径下,找到bin/catalina.sh  ...

  7. content is king – Bill Gates (1/3/1996) 内容为王 - 比尔盖茨

    以下中文版本由谷歌翻译 内容为王 - 比尔盖茨(1/3/1996) 内容是我期望在互联网上赚取大部分真钱的地方,就像在广播中一样. 半个世纪前开始的电视革命催生了许多行业,包括制造电视机,但长期的赢家 ...

  8. Vue -computed传参数

    vue 中computed想传递参数怎么办? 闭包在这里起到的重要的作用 <input v-model="newItem(key,val)" type="text& ...

  9. phpstrom怎样显示类的方法或函数列表

    phpstorm是能显示类的函数或方法列表的. 打开phpstorm,鼠标放到编辑器的右下角(矩形加一个下划线,跟电视机的图标差不多),不用点击就能显示出来一个弹窗: 让后点击Structure,就出 ...

  10. ob缓存的基本使用

    在页面 加载的时候 如果 图片 很多 很大 会造成页面的阻塞降低用户体验 我们在点击页面的时候可以使用OB缓存 整个页面, 当用户点击的时候直接请求的是我们预先准备好的html页面 .也降低了我们数据 ...