【bzoj1097】[POI2007]旅游景点atr 状压dp+堆优化Dijkstra
题目描述
FGD想从成都去上海旅游。在旅途中他希望经过一些城市并在那里欣赏风景,品尝风味小吃或者做其他的有趣的事情。经过这些城市的顺序不是完全随意的,比如说FGD不希望在刚吃过一顿大餐之后立刻去下一个城市登山,而是希望去另外什么地方喝下午茶。幸运的是,FGD的旅程不是既定的,他可以在某些旅行方案之间进行选择。由于FGD非常讨厌乘车的颠簸,他希望在满足他的要求的情况下,旅行的距离尽量短,这样他就有足够的精力来欣赏风景或者是泡MM了^_^.整个城市交通网络包含N个城市以及城市与城市之间的双向道路M条。城市自1至N依次编号,道路亦然。没有从某个城市直接到它自己的道路,两个城市之间最多只有一条道路直接相连,但可以有多条连接两个城市的路径。任意两条道路如果相遇,则相遇点也必然是这N个城市之一,在中途,由于修建了立交桥和下穿隧道,道路是不会相交的。每条道路都有一个固定长度。在中途,FGD想要经过K(K<=N-2)个城市。成都编号为1,上海编号为N,而FGD想要经过的N个城市编号依次为2,3,…,K+1.举例来说,假设交通网络如下图。FGD想要经过城市2,3,4,5,并且在2停留的时候在3之前,而在4,5停留的时候在3之后。那么最短的旅行方案是1-2-4-3-4-5-8,总长度为19。注意FGD为了从城市2到城市4可以路过城市3,但不在城市3停留。这样就不违反FGD的要求了。并且由于FGD想要走最短的路径,因此这个方案正是FGD需要的。
输入
第一行包含3个整数N(2<=N<=20000),M(1<=M<=200000),K(0<=K<=20),意义如上所述。
输出
只包含一行,包含一个整数,表示最短的旅行距离。
样例输入
8 15 4
1 2 3
1 3 4
1 4 4
1 6 2
1 7 3
2 3 6
2 4 2
2 5 2
3 4 3
3 6 3
3 8 6
4 5 2
4 8 6
5 7 4
5 8 6
3
2 3
3 4
3 5
样例输出
19
题解
状压dp+堆优化Dijkstra
题目给出$k\le 20$及每个点经过一次,显然状压dp。
不过由于点数非常多,因此不能以点数为状态,而是以关键点为状态。
设$f[i][j]$表示经过的点的状态为$i$,当前所在点为第$j$个关键点的最小路程。
考虑枚举下一个关键点,所走的路径一定是它们之间的最短路。
所以预处理出$1...k+1$到所有点的最短路,然后初始状态为$f[1<<i][i]=dis[1][i]$,转移时加上最短距离。
最后的答案就是$min(f[(1<<k)-1][i]+dis[i][n])$。
时间复杂度$O(k(n+m)\log n+2^k·k^2)$
#include <queue>
#include <cstdio>
#include <cstring>
#include <utility>
#define N 20010
#define M 400010
using namespace std;
typedef pair<int , int> pr;
priority_queue<pr> q;
int head[N] , to[M] , len[M] , next[M] , cnt , dis[22][N] , vis[N] , lim[N] , f[1 << 20][21];
void add(int x , int y , int z)
{
to[++cnt] = y , len[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
}
void dijkstra(int s)
{
int i , x;
memset(dis[s] , 0x3f , sizeof(dis[s])) , memset(vis , 0 , sizeof(vis));
dis[s][s] = 0 , q.push(pr(0 , s));
while(!q.empty())
{
x = q.top().second , q.pop();
if(vis[x]) continue;
vis[x] = 1;
for(i = head[x] ; i ; i = next[i])
if(dis[s][to[i]] > dis[s][x] + len[i])
dis[s][to[i]] = dis[s][x] + len[i] , q.push(pr(-dis[s][to[i]] , to[i]));
}
}
int main()
{
int n , m , d , p , i , j , k , x , y , z , ans = 1 << 30;
scanf("%d%d%d" , &n , &m , &d);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d%d" , &x , &y , &z) , add(x , y , z) , add(y , x , z);
for(i = 1 ; i <= d + 1 ; i ++ ) dijkstra(i);
scanf("%d" , &p);
for(i = 1 ; i <= p ; i ++ ) scanf("%d%d" , &x , &y) , lim[y - 1] |= (1 << (x - 2));
if(!d)
{
printf("%d\n" , dis[1][n]);
return 0;
}
memset(f , 0x3f , sizeof(f));
for(i = 1 ; i <= d ; i ++ )
if(!lim[i])
f[1 << (i - 1)][i] = dis[1][i + 1];
for(i = 1 ; i < 1 << d ; i ++ )
for(j = 1 ; j <= d ; j ++ )
if(i & (1 << (j - 1)))
for(k = 1 ; k <= d ; k ++ )
if(!(i & (1 << (k - 1))) && !(~i & lim[k]))
f[i | (1 << (k - 1))][k] = min(f[i | (1 << (k - 1))][k] , f[i][j] + dis[j + 1][k + 1]);
for(i = 1 ; i <= d ; i ++ ) ans = min(ans , f[(1 << d) - 1][i] + dis[i + 1][n]);
printf("%d\n" , ans);
return 0;
}
【bzoj1097】[POI2007]旅游景点atr 状压dp+堆优化Dijkstra的更多相关文章
- BZOJ_1097_[POI2007]旅游景点atr_状压DP
BZOJ_1097_[POI2007]旅游景点atr_状压DP 题面描述: FGD想从成都去上海旅游.在旅途中他希望经过一些城市并在那里欣赏风景,品尝风味小吃或者做其他的有趣 的事情.经过这些城市的顺 ...
- BZOJ1097: [POI2007]旅游景点atr
..k次最短路后,考虑如何满足先走一些点 用状压dp,每一个点考虑它所需要经过的点a[i],当当前走过的点包含a[i]时,i 这个点才可以到达. 写的时候用记忆化搜索. #include<bit ...
- 2018.11.06 bzoj1097: [POI2007]旅游景点atr(最短路+状压dp)
传送门 预处理出不能在每个点停留之后才停留的点的状态. 对kkk个点都跑一次最短路存下来之后只需要简单状压一下就能过了吐槽原题空间64MB蒟蒻无能为力 然后用fillfillfill赋极大值的时候当m ...
- 【BZOJ1097】[POI2007]旅游景点atr 最短路+状压DP
[BZOJ1097][POI2007]旅游景点atr Description FGD想从成都去上海旅游.在旅途中他希望经过一些城市并在那里欣赏风景,品尝风味小吃或者做其他的有趣的事情.经过这些城市的顺 ...
- 【BZOJ-1097】旅游景点atr SPFA + 状压DP
1097: [POI2007]旅游景点atr Time Limit: 30 Sec Memory Limit: 357 MBSubmit: 1531 Solved: 352[Submit][Sta ...
- BZOJ 1097: [POI2007]旅游景点atr( 最短路 + 状压dp )
先最短路预处理, 然后状压就行了 -------------------------------------------------------------------------- #include ...
- bzoj [POI2007]旅游景点atr 状态压缩+Dij
[POI2007]旅游景点atr Time Limit: 30 Sec Memory Limit: 357 MBSubmit: 2258 Solved: 595[Submit][Status][D ...
- 【bzoj5197】[CERC2017]Gambling Guide 期望dp+堆优化Dijkstra
题目描述 给定一张n个点,m条双向边的无向图. 你要从1号点走到n号点.当你位于x点时,你需要花1元钱,等概率随机地买到与x相邻的一个点的票,只有通过票才能走到其它点. 每当完成一次交易时,你可以选择 ...
- [POI2007]旅游景点atr
Description FGD想从成都去上海旅游.在旅途中他希望经过一些城市并在那里欣赏风景,品尝风味小吃或者做其他的有趣的事情.经过这些城市的顺序不是完全随意的,比如说FGD不希望在刚吃过一顿大餐之 ...
随机推荐
- CentOS替换系统自带JDK
1.解压jdk安装包到/opt 下 /opt/jdk1.8.0_181 2.编辑/etc/profile, 增加如下内容 export JAVA_HOME=/opt/jdk1.8.0_181expor ...
- java基础面试题:如何把一段逗号分割的字符串转换成一个数组? String s = "a" +"b" + "c" + "d";生成几个对象?
package com.swift; public class Douhao_String_Test { public static void main(String[] args) { /* * 如 ...
- Vue 恢复初始值的快速方法
vue 中经常定义很多data ,在用户进行一些操作后,需要讲data中的某个对象定义为初始值 例如 form: { title: '', describe: '', inspectionCatego ...
- 记录一下CSS outline-width 属性
outline(轮廓)是绘制于元素周围的一条线,位于边框边缘的外围. outline-width指定轮廓的宽度. 注意: 请始终在outline-width属性之前声明outline-style属性. ...
- 2018.11.7 Nescafe29 T1 穿越七色虹
题目 题目背景 在 Nescafe27 和 28 中,讲述了一支探险队前往 Nescafe 之塔探险的故事…… 当两位探险队员以最快的时间把礼物放到每个木箱里之后,精灵们变身为一缕缕金带似的光,簇簇光 ...
- PAT 乙级 1015
题目 题目地址:PAT 乙级 1015 题解 常规题,难点在于理清楚排序规则,通过比较简洁的方式进行编码: 在这里我选择使用vector进行存储,并使用sort方法排序,因为本题不是简单按照大小排序, ...
- PHP静态文件缓存
ob_start(); 2 echo 'aaa'; 3 $string = ob_get_contents(); 4 file_put_contents('a.html', $string); 5 o ...
- phpstudy iis版本 php4.4.5 和 php5.6.7目录权限问题
开始用的php4.4.5 +iis 权限设置好了,切换成php5.6.7后目录没有了写入权限,各种百度后未能解决 php4.4.5 +iis 时 iis 匿名身份验证 用户是 IUSR 目 ...
- Python_day01_作业笔记
内容大纲: 1. python的出生与应用以及历史, python2x: 源码冗余,源码重复,源码不规范. python3x: 源码清晰优美简单. 2. python的种类. Cpython: 官 ...
- 20190103(GIL,池,阻塞,同步异步)
GIL锁 什么是GIL GIL全局解释器锁,是防止多个线程在同一时间同时执行的.CPython解释器特有的一种互斥锁. 每一个py文件都会有自己的解释器,也就是说不同py文件的GIL都是独立的, ps ...