CSU-2034 Column Addition
CSU-2034 Column Addition
Description
A multi-digit column addition is a formula on adding two integers written like this:
aaarticlea/webp;base64,UklGRg4FAABXRUJQVlA4TAIFAAAvm4EcAB6q2rYtkpxP7snUOdQR1BGULt22bbmSpUq2GtWqVJih1NAy74aT5d0SJQa+gaZw/WHmxE/cF5TLGGZmsMz4hBMHRdv/ts0P9jL/O+gE/xMYC4eamhkKCQoZGQV17yGU1b333m2GQMZPirVtbaY9cjbDHlgBK4hGx8bGIVFIVFRU1PReUK/BTP97L5ivvGLK039HbiQpUnoYbjOLqXmAkjf37Wb+3cy/Tek2dHbYNYDiKXtqROChO8XfwgRbtjr4xnoGgfQr5v/gCCpWsRDA5jPcjwJf7lO5Slc7y/PPSrYujcBMnPCpqIbAlS3iCiZYRTGfZB8C+w7KJ2nAR9RvDWsITBlJ66SzwjVcQUkRg/lk+85WBEW5Cjx8JP3mRUmOmxdNJF41ArctEldQUTpSsW16alCyiEGE+QPY1v+T74/Wzm9xjADEq9bW1goVnxqu9y1suPrjIDnlaRRgODQASKOze5wjw/1kK6oVZVLl6rjWPLz6HVakbIkpDpHFbgVw3ngR6bZtEeX3oAjle1kQhM9YnLKlRpR0BdtYdreyCmwalwUPfepDUoYotw1ZJsa3CxGOobXf2XH5Z9zA94Ez5omxNx4ibTkzM8u0UrxnEcQ2NZ2zzF7omDiKOxZfynCrbrtTrvdxs/+UL2VfcRhDl12MAk+FwSY2HdfcHWomycyKsIKn0lX/hm9MUxftk5otP8kXrb4wsE08FiBTgad8DzP7HJQtCPh64o4rxtEWu5WSNVsc7Zl5Y1BPBRXmo2yhGy5qfV9xebvt6UVJyO96gf2UFWn6/qL5F2q2pOWKojGo9p1PdQkDvgLln6bPt1Vj1TFB+d0r0cAykVbn3X2f6JPabfBs44VIr+/qB8zlqVd9sVHmP2s1ipWU3aF4T12cewGOK56o29J9N1wqg1HqN4u9KlfvzkXZAu/Oa6qSa8ezHZd/flIyWLlFhr+zPUR9ll+GUH1k/QsveIpAuhdeeCHMxuqE9HXc05Bo4cAvmand14ePVPVld1N2dUwq1ldSU6jPzuvXIpaff17cksChZY+H9+Xnn4tYJ75JPxO8/SyWlIWUhfGzEEPq0nlbml+OgYzVJXlqNmVfdmda4cndqUrtXinKFQP5b/iynLl18W8Rlwcakv/ddvmStozAVi3y1Kseon5/lwJNHNMxcYXTeOrdf+AuDxOsSJMAbftE+9ILXNUii/uTDfvmDFmb5oVnPxP4skVlCwMiCVkYLNFjTVRS2aIKT8VFb0ONqmTdFkdzZt64vNa+1yLKpjtVEmDtU321hvfizvv+PPFNbrLMyStHi+Z2rgriYuQmxyhfqkTcQ4+u4iYef5Y0YuZS6uKXiYvnba3IT4KI8Y0JJZQnxA306Cou7ifrsLbS9om3tbUeaDRxSN+JE+jRVTx29MDE+OVAYx6ZqRWrKBJTYBsvPivKhhPo7iqy4r1Ud4TiO3yr3+yojzy5+x6cQHdXEeAPUbNtlZSU3ZnKfL7CCXR3FQHSfdvEBez3SjSwC0U/2P+4g/++ee42mOCTWPwArE2zZdlxsT/vtodxAx1dxY4Mf8fvy0iAit+H5lNSTuedlAdcYaWrq6jfhKzlOp5GXbzPua+wOCU7r1acQI+uImT7bi5zX7MEnV5y/7EIiys8t627qwiPff8OkN95a5VRFCFyrf7Ke0V1FTelpxX73wF4sGjJ2v0/3ISPm/13s/8A" alt="img">
A multi-digit column addition is written on the blackboard, but the sum is not necessarily correct. We can erase any number of the columns so that the addition becomes correct. For example, in the following addition, we can obtain a correct addition by erasing the second and the forth columns.

Your task is to find the minimum number of columns needed to be erased such that the remaining formula becomes a correct addition.
Input
There are multiple test cases in the input. Each test case starts with a line containing the single integer n, the number of digit columns in the addition (1 ⩽ n ⩽ 1000). Each of the next 3 lines contain a string of n digits. The number on the third line is presenting the (not necessarily correct) sum of the numbers in the first and the second line. The input terminates with a line containing “0” which should not be processed.
Output
For each test case, print a single line containing the minimum number of columns needed to be erased.
Sample Input
3
123
456
579
5
12127
45618
51825
2
24
32
32
5
12299
12299
25598
0
Sample Output
0
2
2
1
题意
给定一个n,给出三个n位数,你可以同时去掉这三个数中的同一位数,使第一个数加第二个数等于第三个数,问最小需要去掉几位。
题解
这是一个DP题,贪心的去是不对的,随便举个例子即可证明贪心错误。
设\(dp[i]\)为到第i位最多可以保留多少位,用一个变量ans1存储最大能保留多少位。设a[i]为第一串数字的第i个数,b[i]为第二串数字的第i个数,ans[i]为第三串数字的第i个数,从n到1处理加法。
若(a[i]+b[i])%10==ans[i],说明这一位可以保留,将f[i]设为1,如果有进位,将i处进位(k[i])设为1,如果没有进位,k[i] = 0, 更新答案最大值,只在不进位时更新最大值是有原因的,因为如果进位的话,你无法确定这一位是否该留,比如99 99 98,均满足相等,但都有进位,一个也不能留
然后从n到i枚举j,如果(a[i]+b[i]+k[j])%10==1,那么f[i]=max(f[i], f[j] + 1),同样有进位的话更新k[i],无进位时更新一下最大能保留多少位,最后取输出n-ans1即可
#include<bits/stdc++.h>
using namespace std;
int a[1050], b[1050], ans[1050], f[1050];
int k[1050];
int main() {
int n;
while (scanf("%d", &n) != EOF) {
if (n == 0) break;
for (int i = 1; i <= n; i++) {
scanf("%1d", &a[i]);
}
for (int i = 1; i <= n; i++) {
scanf("%1d", &b[i]);
}
for (int i = 1; i <= n; i++) {
scanf("%1d", &ans[i]);
}
int ans1 = 0;
memset(f, 0, sizeof(f));
memset(k, 0, sizeof(k));
for (int i = n; i >= 1; i--) {
if ((a[i] + b[i]) % 10 == ans[i]) {
f[i] = 1;
if (a[i] + b[i] - 10 == ans[i]) k[i] = 1;
else {
k[i] = 0;
ans1 = max(ans1, f[i]);
}
}
for (int j = n; j > i; j--) {
if ((a[i] + b[i] + k[j]) % 10 == ans[i]) {
f[i] = max(f[i], f[j] + 1);
if (a[i] + b[i] + k[j] - 10 == ans[i]) k[i] = 1;
else {
k[i] = 0;
ans1 = max(ans1, f[i]);
}
}
}
}
printf("%d\n", n - ans1);
}
return 0;
}
/**********************************************************************
Problem: 2034
User: Artoriax
Language: C++
Result: AC
Time:148 ms
Memory:2044 kb
**********************************************************************/
CSU-2034 Column Addition的更多相关文章
- Column Addition~DP(脑子抽了,当时没有想到)
Description A multi-digit column addition is a formula on adding two integers written like this:
- 【动态规划】Column Addition @ICPC2017Tehran/upcexam5434
时间限制: 1 Sec 内存限制: 128 MB 题目描述 A multi-digit column addition is a formula on adding two integers writ ...
- 2018湖南多校第二场-20180407 Column Addition
Description A multi-digit column addition is a formula on adding two integers written like this:
- TokuDB存储引擎
TokuDB是Tokutek公司开发的基于ft-index(Fractal Tree Index)键值对的存储引擎. 它使用索引加快查询速度,具有高扩展性,并支持hot scheme modifica ...
- Servlet3.0学习总结(二)——使用注解标注过滤器(Filter)
Servlet3.0提供@WebFilter注解将一个实现了javax.servlet.Filter接口的类定义为过滤器,这样我们在web应用中使用过滤器时,也不再需要在web.xml文件中配置过滤器 ...
- MariaDB glare cluster简介
MariaDB MariaDB 是由原来 MySQL 的作者Michael Widenius创办的公司所开发的免费开源的数据库服务器,MariaDB是同一MySQL版本的二进制替代品, 当前最新版本1 ...
- MySQL 高性能存储引擎:TokuDB初探
在安装MariaDB的时候了解到代替InnoDB的TokuDB,看简介非常的棒,这里对ToduDB做一个初步的整理,使用后再做更多的分享. 什么是TokuDB? 在MySQL最流行的支持全事务的引擎为 ...
- System.Windows.Forms
File: winforms\Managed\System\WinForms\DataGridView.cs Project: ndp\fx\src\System.Windows.Forms.cspr ...
- 浅谈MariaDB Galera Cluster架构
MariaDB MariaDB 是由原来 MySQL 的作者Michael Widenius创办的公司所开发的免费开源的数据库服务器,MariaDB是同一MySQL版本的二进制替代品 ...
随机推荐
- SQL Server 08版与14版处理重复行的方式
在项目中,利用循环拼接成了插入多行数据的SQL语句: Insert into table(col1,col2)vaules(value11,value21); Insert into table(co ...
- POJ 3734 Blocks (线性递推)
定义ai表示红色和绿色方块中方块数为偶数的颜色有i个,i = 0,1,2. aij表示刷到第j个方块时的方案数,这是一个线性递推关系. 可以构造递推矩阵A,用矩阵快速幂求解. /*********** ...
- 【洛谷2633】Count on a tree(树上主席树)
点此看题面 大致题意: 给你一棵树,每次问你两点之间第\(k\)小的点权,强制在线. 主席树 这种题目强制在线一般就是数据结构了. 而看到区间第\(k\)小,很容易就能想到主席树. 至少不会有人想到树 ...
- vuejs组件
<div id='root'> <ul> <todo-item></todo-item> </ul> </div> <sc ...
- SSM框架之动态代理Mapper快速搭建
1. 新建Maven项目 ssmnew 2. pom.xml <project xmlns="http://maven.apache.org/POM/4.0.0" ...
- MRCA|Wright–Fisher population genetic model|SNP rate
(Panda has a high heterozygosity rate) 通过对mtDNA(为了预测SNP的密度)的分析,可知panda的多样性,当前全基因组数据才能完全建立模型. mitocho ...
- ScriptMaker
0x00 前言 pwn脚本千篇一律,之前也是保存了一份模板,每次都用它,但还是觉得每次都复制一次各种名字还是有的累,于是就写了一份脚本生成器 0x01 ScriptMaker #!/usr/bin/e ...
- Linux环境下使用xampp配置php开发环境
XAMPP (Apache+MySQL+PHP+PERL)是一个功能强大的建站集成软件包.这个软件包原来的名字是LAMPP,但是为 了避免误 解,最新的几个版本就改名为 XAMPP 了.它可以在Win ...
- macOS如何正确驱动集成显卡HDMI(包括视频和音频)
聊聊如何正确驱动集成显卡HDMI(包括视频和音频)必备条件:1.必须使用AppleHDA驱动声卡(仿冒.clover.applealc都可以的),使用voodoo驱动声卡应该不行的.2.dsdt或者s ...
- JavaScript 遍历对象查找指定的值并返回路径
问:JavaScript 如何查找对象中某个 value 并返回路径上所有的 key? let obj = { key1: 'str1', key2: { key3: 'str3' }, key4: ...