CSU-2034 Column Addition

Description

A multi-digit column addition is a formula on adding two integers written like this:

aaarticlea/webp;base64,UklGRg4FAABXRUJQVlA4TAIFAAAvm4EcAB6q2rYtkpxP7snUOdQR1BGULt22bbmSpUq2GtWqVJih1NAy74aT5d0SJQa+gaZw/WHmxE/cF5TLGGZmsMz4hBMHRdv/ts0P9jL/O+gE/xMYC4eamhkKCQoZGQV17yGU1b333m2GQMZPirVtbaY9cjbDHlgBK4hGx8bGIVFIVFRU1PReUK/BTP97L5ivvGLK039HbiQpUnoYbjOLqXmAkjf37Wb+3cy/Tek2dHbYNYDiKXtqROChO8XfwgRbtjr4xnoGgfQr5v/gCCpWsRDA5jPcjwJf7lO5Slc7y/PPSrYujcBMnPCpqIbAlS3iCiZYRTGfZB8C+w7KJ2nAR9RvDWsITBlJ66SzwjVcQUkRg/lk+85WBEW5Cjx8JP3mRUmOmxdNJF41ArctEldQUTpSsW16alCyiEGE+QPY1v+T74/Wzm9xjADEq9bW1goVnxqu9y1suPrjIDnlaRRgODQASKOze5wjw/1kK6oVZVLl6rjWPLz6HVakbIkpDpHFbgVw3ngR6bZtEeX3oAjle1kQhM9YnLKlRpR0BdtYdreyCmwalwUPfepDUoYotw1ZJsa3CxGOobXf2XH5Z9zA94Ez5omxNx4ibTkzM8u0UrxnEcQ2NZ2zzF7omDiKOxZfynCrbrtTrvdxs/+UL2VfcRhDl12MAk+FwSY2HdfcHWomycyKsIKn0lX/hm9MUxftk5otP8kXrb4wsE08FiBTgad8DzP7HJQtCPh64o4rxtEWu5WSNVsc7Zl5Y1BPBRXmo2yhGy5qfV9xebvt6UVJyO96gf2UFWn6/qL5F2q2pOWKojGo9p1PdQkDvgLln6bPt1Vj1TFB+d0r0cAykVbn3X2f6JPabfBs44VIr+/qB8zlqVd9sVHmP2s1ipWU3aF4T12cewGOK56o29J9N1wqg1HqN4u9KlfvzkXZAu/Oa6qSa8ezHZd/flIyWLlFhr+zPUR9ll+GUH1k/QsveIpAuhdeeCHMxuqE9HXc05Bo4cAvmand14ePVPVld1N2dUwq1ldSU6jPzuvXIpaff17cksChZY+H9+Xnn4tYJ75JPxO8/SyWlIWUhfGzEEPq0nlbml+OgYzVJXlqNmVfdmda4cndqUrtXinKFQP5b/iynLl18W8Rlwcakv/ddvmStozAVi3y1Kseon5/lwJNHNMxcYXTeOrdf+AuDxOsSJMAbftE+9ILXNUii/uTDfvmDFmb5oVnPxP4skVlCwMiCVkYLNFjTVRS2aIKT8VFb0ONqmTdFkdzZt64vNa+1yLKpjtVEmDtU321hvfizvv+PPFNbrLMyStHi+Z2rgriYuQmxyhfqkTcQ4+u4iYef5Y0YuZS6uKXiYvnba3IT4KI8Y0JJZQnxA306Cou7ifrsLbS9om3tbUeaDRxSN+JE+jRVTx29MDE+OVAYx6ZqRWrKBJTYBsvPivKhhPo7iqy4r1Ud4TiO3yr3+yojzy5+x6cQHdXEeAPUbNtlZSU3ZnKfL7CCXR3FQHSfdvEBez3SjSwC0U/2P+4g/++ee42mOCTWPwArE2zZdlxsT/vtodxAx1dxY4Mf8fvy0iAit+H5lNSTuedlAdcYaWrq6jfhKzlOp5GXbzPua+wOCU7r1acQI+uImT7bi5zX7MEnV5y/7EIiys8t627qwiPff8OkN95a5VRFCFyrf7Ke0V1FTelpxX73wF4sGjJ2v0/3ISPm/13s/8A" alt="img">

A multi-digit column addition is written on the blackboard, but the sum is not necessarily correct. We can erase any number of the columns so that the addition becomes correct. For example, in the following addition, we can obtain a correct addition by erasing the second and the forth columns.

Your task is to find the minimum number of columns needed to be erased such that the remaining formula becomes a correct addition.

Input

There are multiple test cases in the input. Each test case starts with a line containing the single integer n, the number of digit columns in the addition (1 ⩽ n ⩽ 1000). Each of the next 3 lines contain a string of n digits. The number on the third line is presenting the (not necessarily correct) sum of the numbers in the first and the second line. The input terminates with a line containing “0” which should not be processed.

Output

For each test case, print a single line containing the minimum number of columns needed to be erased.

Sample Input

3
123
456
579
5
12127
45618
51825
2
24
32
32
5
12299
12299
25598
0

Sample Output

0
2
2
1

题意

给定一个n,给出三个n位数,你可以同时去掉这三个数中的同一位数,使第一个数加第二个数等于第三个数,问最小需要去掉几位。

题解

这是一个DP题,贪心的去是不对的,随便举个例子即可证明贪心错误。

设\(dp[i]\)为到第i位最多可以保留多少位,用一个变量ans1存储最大能保留多少位。设a[i]为第一串数字的第i个数,b[i]为第二串数字的第i个数,ans[i]为第三串数字的第i个数,从n到1处理加法。

若(a[i]+b[i])%10==ans[i],说明这一位可以保留,将f[i]设为1,如果有进位,将i处进位(k[i])设为1,如果没有进位,k[i] = 0, 更新答案最大值,只在不进位时更新最大值是有原因的,因为如果进位的话,你无法确定这一位是否该留,比如99 99 98,均满足相等,但都有进位,一个也不能留

然后从n到i枚举j,如果(a[i]+b[i]+k[j])%10==1,那么f[i]=max(f[i], f[j] + 1),同样有进位的话更新k[i],无进位时更新一下最大能保留多少位,最后取输出n-ans1即可

#include<bits/stdc++.h>
using namespace std;
int a[1050], b[1050], ans[1050], f[1050];
int k[1050];
int main() {
int n;
while (scanf("%d", &n) != EOF) {
if (n == 0) break;
for (int i = 1; i <= n; i++) {
scanf("%1d", &a[i]);
}
for (int i = 1; i <= n; i++) {
scanf("%1d", &b[i]);
}
for (int i = 1; i <= n; i++) {
scanf("%1d", &ans[i]);
}
int ans1 = 0;
memset(f, 0, sizeof(f));
memset(k, 0, sizeof(k));
for (int i = n; i >= 1; i--) {
if ((a[i] + b[i]) % 10 == ans[i]) {
f[i] = 1;
if (a[i] + b[i] - 10 == ans[i]) k[i] = 1;
else {
k[i] = 0;
ans1 = max(ans1, f[i]);
}
}
for (int j = n; j > i; j--) {
if ((a[i] + b[i] + k[j]) % 10 == ans[i]) {
f[i] = max(f[i], f[j] + 1);
if (a[i] + b[i] + k[j] - 10 == ans[i]) k[i] = 1;
else {
k[i] = 0;
ans1 = max(ans1, f[i]);
}
}
}
}
printf("%d\n", n - ans1);
}
return 0;
}
/**********************************************************************
Problem: 2034
User: Artoriax
Language: C++
Result: AC
Time:148 ms
Memory:2044 kb
**********************************************************************/

CSU-2034 Column Addition的更多相关文章

  1. Column Addition~DP(脑子抽了,当时没有想到)

    Description A multi-digit column addition is a formula on adding two integers written like this:

  2. 【动态规划】Column Addition @ICPC2017Tehran/upcexam5434

    时间限制: 1 Sec 内存限制: 128 MB 题目描述 A multi-digit column addition is a formula on adding two integers writ ...

  3. 2018湖南多校第二场-20180407 Column Addition

    Description A multi-digit column addition is a formula on adding two integers written like this:

  4. TokuDB存储引擎

    TokuDB是Tokutek公司开发的基于ft-index(Fractal Tree Index)键值对的存储引擎. 它使用索引加快查询速度,具有高扩展性,并支持hot scheme modifica ...

  5. Servlet3.0学习总结(二)——使用注解标注过滤器(Filter)

    Servlet3.0提供@WebFilter注解将一个实现了javax.servlet.Filter接口的类定义为过滤器,这样我们在web应用中使用过滤器时,也不再需要在web.xml文件中配置过滤器 ...

  6. MariaDB glare cluster简介

    MariaDB MariaDB 是由原来 MySQL 的作者Michael Widenius创办的公司所开发的免费开源的数据库服务器,MariaDB是同一MySQL版本的二进制替代品, 当前最新版本1 ...

  7. MySQL 高性能存储引擎:TokuDB初探

    在安装MariaDB的时候了解到代替InnoDB的TokuDB,看简介非常的棒,这里对ToduDB做一个初步的整理,使用后再做更多的分享. 什么是TokuDB? 在MySQL最流行的支持全事务的引擎为 ...

  8. System.Windows.Forms

    File: winforms\Managed\System\WinForms\DataGridView.cs Project: ndp\fx\src\System.Windows.Forms.cspr ...

  9. 浅谈MariaDB Galera Cluster架构

    MariaDB          MariaDB 是由原来 MySQL 的作者Michael Widenius创办的公司所开发的免费开源的数据库服务器,MariaDB是同一MySQL版本的二进制替代品 ...

随机推荐

  1. java Vamei快速教程13 String类

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 之前的Java基础系列中讨论了Java最核心的概念,特别是面向对象的基础.在Jav ...

  2. IOS 线程描述

    ●什么是线程 ● 1个进程要想执行任务,必须得有线程(每1个进程至少要有1条线程) ● 线程是进程的基本执行单元,一个进程(程序)的所有任务都在线程中执行 ● 比如使用酷狗播放音乐.使用迅雷下载电影, ...

  3. hdu-2256 Problem of Precision---矩阵快速幂+数学技巧

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2256 题目大意: 题目要求的是(sqrt(2)+sqrt(3))^2n %1024向下取整的值 解题 ...

  4. 【洛谷2522】[HAOI2011] Problem b(莫比乌斯反演)

    点此看题面 大致题意: 求\(\sum_{x=a}^b\sum_{y=c}^d[gcd(x,y)==k]\). 关于另一道题目 在看这篇博客之前,如果你做过一道叫做[BZOJ1101][POI2007 ...

  5. 【HDU1542】Atlantis (扫描线的经典运用)

    点此看题面 大致题意: 给你\(N\)个矩形,请你求出它们覆盖的面积(重叠的面积只算一次). 扫描线 这道题是一道典型的求矩形面积并问题,是扫描线的一个经典运用.这里就不赘述了. 代码 #includ ...

  6. python setup.py install 报错

    python setup.py install 报错信息 [root@VM_25_28_centos psutil-2.0.0]# python setup.py install running in ...

  7. python_61_装饰器4

    import time def timer(func):#timer(test1) func=test1 def deco(): start_time=time.time() func()#run t ...

  8. Java第六次作业:RuPengGame setGameSize setGameTitle alert loadBgView playSound pause closeSound confirm input createText setTextPosition setTextColor setTextFontSize hideText showText CreateImage(number)

    package com.swift; import java.awt.Color; import com.rupeng.game.GameCore;//导入游戏引擎包 //实现Runnable接口 p ...

  9. 2019 ACM-ICPC全国邀请赛(西安) M.Travel 二分+判联通

    https://nanti.jisuanke.com/t/39280 讲道理这题写bfs求最大边权限制下从1到n的最短步数,然后二分判一下就行了. 然鹅我还是直接套了dij,一开始纠结dij能不能过, ...

  10. SummerVocation_Learning--java的线程死锁

    public class Test_DeadLock implements Runnable { ; static Object o1 = new Object(),o2 = new Object() ...