CSU-2034 Column Addition

Description

A multi-digit column addition is a formula on adding two integers written like this:

aaarticlea/webp;base64,UklGRg4FAABXRUJQVlA4TAIFAAAvm4EcAB6q2rYtkpxP7snUOdQR1BGULt22bbmSpUq2GtWqVJih1NAy74aT5d0SJQa+gaZw/WHmxE/cF5TLGGZmsMz4hBMHRdv/ts0P9jL/O+gE/xMYC4eamhkKCQoZGQV17yGU1b333m2GQMZPirVtbaY9cjbDHlgBK4hGx8bGIVFIVFRU1PReUK/BTP97L5ivvGLK039HbiQpUnoYbjOLqXmAkjf37Wb+3cy/Tek2dHbYNYDiKXtqROChO8XfwgRbtjr4xnoGgfQr5v/gCCpWsRDA5jPcjwJf7lO5Slc7y/PPSrYujcBMnPCpqIbAlS3iCiZYRTGfZB8C+w7KJ2nAR9RvDWsITBlJ66SzwjVcQUkRg/lk+85WBEW5Cjx8JP3mRUmOmxdNJF41ArctEldQUTpSsW16alCyiEGE+QPY1v+T74/Wzm9xjADEq9bW1goVnxqu9y1suPrjIDnlaRRgODQASKOze5wjw/1kK6oVZVLl6rjWPLz6HVakbIkpDpHFbgVw3ngR6bZtEeX3oAjle1kQhM9YnLKlRpR0BdtYdreyCmwalwUPfepDUoYotw1ZJsa3CxGOobXf2XH5Z9zA94Ez5omxNx4ibTkzM8u0UrxnEcQ2NZ2zzF7omDiKOxZfynCrbrtTrvdxs/+UL2VfcRhDl12MAk+FwSY2HdfcHWomycyKsIKn0lX/hm9MUxftk5otP8kXrb4wsE08FiBTgad8DzP7HJQtCPh64o4rxtEWu5WSNVsc7Zl5Y1BPBRXmo2yhGy5qfV9xebvt6UVJyO96gf2UFWn6/qL5F2q2pOWKojGo9p1PdQkDvgLln6bPt1Vj1TFB+d0r0cAykVbn3X2f6JPabfBs44VIr+/qB8zlqVd9sVHmP2s1ipWU3aF4T12cewGOK56o29J9N1wqg1HqN4u9KlfvzkXZAu/Oa6qSa8ezHZd/flIyWLlFhr+zPUR9ll+GUH1k/QsveIpAuhdeeCHMxuqE9HXc05Bo4cAvmand14ePVPVld1N2dUwq1ldSU6jPzuvXIpaff17cksChZY+H9+Xnn4tYJ75JPxO8/SyWlIWUhfGzEEPq0nlbml+OgYzVJXlqNmVfdmda4cndqUrtXinKFQP5b/iynLl18W8Rlwcakv/ddvmStozAVi3y1Kseon5/lwJNHNMxcYXTeOrdf+AuDxOsSJMAbftE+9ILXNUii/uTDfvmDFmb5oVnPxP4skVlCwMiCVkYLNFjTVRS2aIKT8VFb0ONqmTdFkdzZt64vNa+1yLKpjtVEmDtU321hvfizvv+PPFNbrLMyStHi+Z2rgriYuQmxyhfqkTcQ4+u4iYef5Y0YuZS6uKXiYvnba3IT4KI8Y0JJZQnxA306Cou7ifrsLbS9om3tbUeaDRxSN+JE+jRVTx29MDE+OVAYx6ZqRWrKBJTYBsvPivKhhPo7iqy4r1Ud4TiO3yr3+yojzy5+x6cQHdXEeAPUbNtlZSU3ZnKfL7CCXR3FQHSfdvEBez3SjSwC0U/2P+4g/++ee42mOCTWPwArE2zZdlxsT/vtodxAx1dxY4Mf8fvy0iAit+H5lNSTuedlAdcYaWrq6jfhKzlOp5GXbzPua+wOCU7r1acQI+uImT7bi5zX7MEnV5y/7EIiys8t627qwiPff8OkN95a5VRFCFyrf7Ke0V1FTelpxX73wF4sGjJ2v0/3ISPm/13s/8A" alt="img">

A multi-digit column addition is written on the blackboard, but the sum is not necessarily correct. We can erase any number of the columns so that the addition becomes correct. For example, in the following addition, we can obtain a correct addition by erasing the second and the forth columns.

Your task is to find the minimum number of columns needed to be erased such that the remaining formula becomes a correct addition.

Input

There are multiple test cases in the input. Each test case starts with a line containing the single integer n, the number of digit columns in the addition (1 ⩽ n ⩽ 1000). Each of the next 3 lines contain a string of n digits. The number on the third line is presenting the (not necessarily correct) sum of the numbers in the first and the second line. The input terminates with a line containing “0” which should not be processed.

Output

For each test case, print a single line containing the minimum number of columns needed to be erased.

Sample Input

3
123
456
579
5
12127
45618
51825
2
24
32
32
5
12299
12299
25598
0

Sample Output

0
2
2
1

题意

给定一个n,给出三个n位数,你可以同时去掉这三个数中的同一位数,使第一个数加第二个数等于第三个数,问最小需要去掉几位。

题解

这是一个DP题,贪心的去是不对的,随便举个例子即可证明贪心错误。

设\(dp[i]\)为到第i位最多可以保留多少位,用一个变量ans1存储最大能保留多少位。设a[i]为第一串数字的第i个数,b[i]为第二串数字的第i个数,ans[i]为第三串数字的第i个数,从n到1处理加法。

若(a[i]+b[i])%10==ans[i],说明这一位可以保留,将f[i]设为1,如果有进位,将i处进位(k[i])设为1,如果没有进位,k[i] = 0, 更新答案最大值,只在不进位时更新最大值是有原因的,因为如果进位的话,你无法确定这一位是否该留,比如99 99 98,均满足相等,但都有进位,一个也不能留

然后从n到i枚举j,如果(a[i]+b[i]+k[j])%10==1,那么f[i]=max(f[i], f[j] + 1),同样有进位的话更新k[i],无进位时更新一下最大能保留多少位,最后取输出n-ans1即可

#include<bits/stdc++.h>
using namespace std;
int a[1050], b[1050], ans[1050], f[1050];
int k[1050];
int main() {
int n;
while (scanf("%d", &n) != EOF) {
if (n == 0) break;
for (int i = 1; i <= n; i++) {
scanf("%1d", &a[i]);
}
for (int i = 1; i <= n; i++) {
scanf("%1d", &b[i]);
}
for (int i = 1; i <= n; i++) {
scanf("%1d", &ans[i]);
}
int ans1 = 0;
memset(f, 0, sizeof(f));
memset(k, 0, sizeof(k));
for (int i = n; i >= 1; i--) {
if ((a[i] + b[i]) % 10 == ans[i]) {
f[i] = 1;
if (a[i] + b[i] - 10 == ans[i]) k[i] = 1;
else {
k[i] = 0;
ans1 = max(ans1, f[i]);
}
}
for (int j = n; j > i; j--) {
if ((a[i] + b[i] + k[j]) % 10 == ans[i]) {
f[i] = max(f[i], f[j] + 1);
if (a[i] + b[i] + k[j] - 10 == ans[i]) k[i] = 1;
else {
k[i] = 0;
ans1 = max(ans1, f[i]);
}
}
}
}
printf("%d\n", n - ans1);
}
return 0;
}
/**********************************************************************
Problem: 2034
User: Artoriax
Language: C++
Result: AC
Time:148 ms
Memory:2044 kb
**********************************************************************/

CSU-2034 Column Addition的更多相关文章

  1. Column Addition~DP(脑子抽了,当时没有想到)

    Description A multi-digit column addition is a formula on adding two integers written like this:

  2. 【动态规划】Column Addition @ICPC2017Tehran/upcexam5434

    时间限制: 1 Sec 内存限制: 128 MB 题目描述 A multi-digit column addition is a formula on adding two integers writ ...

  3. 2018湖南多校第二场-20180407 Column Addition

    Description A multi-digit column addition is a formula on adding two integers written like this:

  4. TokuDB存储引擎

    TokuDB是Tokutek公司开发的基于ft-index(Fractal Tree Index)键值对的存储引擎. 它使用索引加快查询速度,具有高扩展性,并支持hot scheme modifica ...

  5. Servlet3.0学习总结(二)——使用注解标注过滤器(Filter)

    Servlet3.0提供@WebFilter注解将一个实现了javax.servlet.Filter接口的类定义为过滤器,这样我们在web应用中使用过滤器时,也不再需要在web.xml文件中配置过滤器 ...

  6. MariaDB glare cluster简介

    MariaDB MariaDB 是由原来 MySQL 的作者Michael Widenius创办的公司所开发的免费开源的数据库服务器,MariaDB是同一MySQL版本的二进制替代品, 当前最新版本1 ...

  7. MySQL 高性能存储引擎:TokuDB初探

    在安装MariaDB的时候了解到代替InnoDB的TokuDB,看简介非常的棒,这里对ToduDB做一个初步的整理,使用后再做更多的分享. 什么是TokuDB? 在MySQL最流行的支持全事务的引擎为 ...

  8. System.Windows.Forms

    File: winforms\Managed\System\WinForms\DataGridView.cs Project: ndp\fx\src\System.Windows.Forms.cspr ...

  9. 浅谈MariaDB Galera Cluster架构

    MariaDB          MariaDB 是由原来 MySQL 的作者Michael Widenius创办的公司所开发的免费开源的数据库服务器,MariaDB是同一MySQL版本的二进制替代品 ...

随机推荐

  1. [Git] Create a new repository on the command line

    echo "# xxx" >> README.md git init git add README.md git commit -m "first commi ...

  2. TTTAttributedLabel

    TTTAttributedLabel 库地址 https://github.com/TTTAttributedLabel/TTTAttributedLabel #import "ViewCo ...

  3. 传入指定字段名称就可以排序的EF写法

    private static IQueryable<T> SetQueryableOrder<T>(this IQueryable<T> query, string ...

  4. hive对有null值的列进行avg,sum,count等操作时会不会过滤null值

    在hive中,我们经常会遇到对某列进行count.sum.avg等操作计算记录数.求和.求平均值等,但这列经常会出现有null值的情况,那这些操作会不会过滤掉null能呢? 下面我们简单测试下: wi ...

  5. opencv与灰度图

    https://blog.csdn.net/qq_32211827/article/details/56854985 首先,灰度图可以是一个通道存成图片,也可以是3个通道存成图片,3个通道存成图片,其 ...

  6. tmux 用z关闭之后的恢复

    ctrl+b 然后z是全屏 但是如果是ctrl+z就是关闭窗口了 tmux ls看所有窗口 然后 tmux attach -t 2或者3就恢复

  7. 1269: [AHOI2006]文本编辑器editor

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5269  Solved: 2037[Submit][Status][Discuss] Descript ...

  8. mysql 5.7 编译安装脚本。

    此脚本尽量运行在centos 服务器上面,用于编译安装mysql 5.7 将此脚本和相应的软件 都放到/usr/local/src 目录下面 由于不能上传附件  所以需要把cmake-3.9.6.ta ...

  9. 【Django】Django中的模糊查询以及Q对象的简单使用

    Django中的模糊查询: 需要做一个查找的功能,所以需要使用到模糊查询. 使用方法是:字段名加上双下划线跟上contains或者icontains,icontains和contains表示是否区分大 ...

  10. Centos7之WEB服务器

    1.安装httpd服务 输入命令:yum -y install httpd [root@N37012 ~]# yum -y install httpc Loaded plugins: fastestm ...