RealPhobia

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 376    Accepted Submission(s): 151

Problem Description
Bert
is a programmer with a real fear of floating point arithmetic. Bert has
quite successfully used rational numbers to write his programs but he
does not like it when the denominator grows large. Your task is to help
Bert by writing a program that decreases the denominator of a rational
number, whilst introducing the smallest error possible. For a rational
number A/B, where B > 2 and 0 < A < B, your program needs to
identify a rational number C/D such that:
1. 0 < C < D < B, and
2. the error |A/B - C/D| is the minimum over all possible values of C and D, and
3. D is the smallest such positive integer.
 
Input
The
input starts with an integer K (1 <= K <= 1000) that represents
the number of cases on a line by itself. Each of the following K lines
describes one of the cases and consists of a fraction formatted as two
integers, A and B, separated by “/” such that:
1. B is a 32 bit integer strictly greater than 2, and
2. 0 < A < B
 
Output
For
each case, the output consists of a fraction on a line by itself. The
fraction should be formatted as two integers separated by “/”.
 
Sample Input
3
1/4
2/3
13/21
 
Sample Output
1/3
1/2
8/13
 
Source
 
Recommend
lcy   |   We have carefully selected several similar problems for you:  4186 4181 4182 4183 4179
 
 
 
#include<stdio.h>
#include<string.h> long long gcd1(long long a,long long b,long long &x,long long &y)
{
if(b == )
{
x = ;
y = ;
return a;
}
long long d = gcd1(b,a%b,x,y);
long long t = x;
x = y;
y = t - a/b*y;
return d;
} int main()
{
int t;
scanf("%d",&t);
while(t--)
{
long long a,b;
scanf("%lld/%lld",&a,&b);
long long x = ,y = ;
long long p = gcd1(a,b,x,y);
//printf("%lld,%lld\n",x,y);
//printf("---%lld\n",p);
//printf("==%lld %lld\n",a,b);
if(p != )
{
printf("%lld/%lld\n",a/p,b/p);
continue;
}
if(a == )
{
printf("1/%lld\n",b-);
continue;
}
long long x1 = ,y1 = ;
if(x > )
{
x1 = (a + y)%a;
y1 = (b - x)%b;
}
else
{
x1 = (a - y)%a;
y1 = (b + x)%b;
}
//printf("%lld %lld %lld %lld\n",x1,y1);
printf("%lld/%lld\n",x1,y1);
}
return ;
}

HDU 4180 扩展欧几里得的更多相关文章

  1. HDU 5114 扩展欧几里得

    题目大意:给你两个球的坐标 他们都往(1, 1)这个方向以相同的速度走,问你他们在哪个位置碰撞. 思路:这种题目需要把x方向和y方向分开来算周期,两个不同周期需要用扩展欧几里得来求第一次相遇. #in ...

  2. hdu 2669(扩展欧几里得)

    Romantic Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  3. hdu 2669 扩展欧几里得(裸)

    #include<stdio.h> #include<iostream> #define ll __int64 ll gcd(ll a,ll b,ll &x,ll &a ...

  4. HDU RSA 扩展欧几里得

    Problem Description RSA is one of the most powerful methods to encrypt data. The RSA algorithm is de ...

  5. 扩展欧几里得 hdu 1576

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 不知道扩展欧几里得的同学可以参考:https://blog.csdn.net/zhjchengf ...

  6. hdu 5512 Pagodas 扩展欧几里得推导+GCD

    题目链接 题意:开始有a,b两点,之后可以按照a-b,a+b的方法生成[1,n]中没有的点,Yuwgna 为先手, Iaka后手.最后不能再生成点的一方输: (1 <= n <= 2000 ...

  7. hdu 1573 A/B (扩展欧几里得)

    Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973)= 1). Input 数据的第一行 ...

  8. hdu 1576 A/B 【扩展欧几里得】【逆元】

    <题目链接> <转载于 >>> > A/B Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)( ...

  9. [ACM] hdu 3923 Invoker (Poyla计数,高速幂运算,扩展欧几里得或费马小定理)

    Invoker Problem Description On of Vance's favourite hero is Invoker, Kael. As many people knows Kael ...

随机推荐

  1. linux 命令——24 Linux文件类型与扩展名

    Linux文件类型和Linux文件的文件名所代表的意义是两个不同的概念.我们通过一般应用程序而创建的比如file.txt.file.tar.gz ,这些文件虽然要用不同的程序来打开,但放在Linux文 ...

  2. Windows下配置Jmeter环境变量

    一.安装SDK 1.下载并安装sdk,安装目录为D:\Program Files (x86)\Java\jdk1.7.0_01 2.配置环境变量 1)新建系统变量:JAVA_HOME = D:\Pro ...

  3. 题解 CF734A 【Anton and Danik】

    本蒟蒻闲来无事刷刷水题 话说这道题,看楼下的大佬们基本都是用字符 ( char ) 来做的,那么我来介绍一下C++的优势: string ! string,也就是类型串,是C语言没有的,使用十分方便 ...

  4. edge不能上网-代码 INET_E_RESOURCE_NOT_FOUND

    这个问题 ,网上有很多解决方法,我基本都测试了一遍,可是我都没有用 情况:首先,我开始的时候是可以用的,然后在公司,开了代理,就不能使用了,这是我之后多次尝试发现的,所以你也遇到和我一样的情况不必惊慌 ...

  5. axios跨域问题记录

    axios({headers: {'X-Requested-With': 'XMLHttpRequest','Content-Type': 'application/json; charset=UTF ...

  6. Linux学习记录(三)

    1.Linux的软件安装 1.1.jdk安装 注意:rpm与软件相关命令 相当于window下的软件助手 管理软件 步骤: 1)查看当前Linux系统是否已经安装java 输入 rpm -qa | g ...

  7. 基于GMap.NET地图下载器的开发和研究

    基于GMap.NET地图下载器的开发和研究 软件下载地址:https://pan.baidu.com/s/1ay0aOm3fiZ35vlfD8kFYFw 1.地图浏览功能 可以浏览谷歌地图.百度.ar ...

  8. madplay移植

    移植前需求准备: a. 源码包: 1. libid3tag-0.15.1b.tar.gz 2. libmad-0.15.1b.tar.gz 3. madplay-0.15.2b.tar.gz 4. z ...

  9. abs的个人博客 http://abs001.top/blog

    abs的个人博客 abs的个人博客 abs的个人博客 abs的个人博客 abs的个人博客 abs的个人博客 abs的个人博客 abs的个人博客 abs的个人博客 abs的个人博客 abs的个人博客 a ...

  10. 4- vue django restful framework 打造生鲜超市 -restful api 与前端源码介绍

    4- vue django restful framework 打造生鲜超市 -restful api 与前端源码介绍 天涯明月笙 关注 2018.02.20 19:23* 字数 762 阅读 135 ...