hdu 3625 Examining the Rooms 轮换斯特林数
题目大意
n个房间对应n把钥匙
每个房间的钥匙随机放在某个房间内,概率相同。
有K次炸门的机会,求能进入所有房间的概率
一号门不给你炸
分析
我们设\(key_i\)为第i间房里的钥匙是哪把
视作房间i向房间\(key_i\)连了一条有向边
这相当于n个点n条边,且每个点出度入度都为1
就是m个环,就是置换嘛
相当于第一类斯特林数\(\left [\begin{matrix} n\\ m \end{matrix}\right]\)
做法
一个环中炸掉一个门就可以开环中所有的门
问题转化为求环的数量\(\le k\)的方案数
由于1不能单独在一个环中(因为不能炸)
\]
(1单独在一个环中则剩下n-1个点和k-1个环)
solution
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef double db;
const int M=23;
int rd(){
int x=0;bool f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(;isdigit(c);c=getchar()) x=x*10+c-48;
return f?x:-x;
}
int tcas;
int n,m;
LL lh[M][M];
LL fac[M];
void init(){
int i,j;
lh[0][0]=1;
for(i=1;i<=20;i++)
for(j=1;j<=i;j++)
lh[i][j]=(i-1)*lh[i-1][j]+lh[i-1][j-1];
for(fac[0]=1,i=1;i<=20;i++) fac[i]=fac[i-1]*i;
}
int main(){
init();
int i;
tcas=rd();
while(tcas--){
n=rd(),m=rd();
LL ans=0;
for(i=1;i<=m;i++)
ans+=lh[n][i]-lh[n-1][i-1];
printf("%.4lf\n",(db)ans/fac[n]);
}
return 0;
}
hdu 3625 Examining the Rooms 轮换斯特林数的更多相关文章
- [HDU 3625]Examining the Rooms (第一类斯特林数)
[HDU 3625]Examining the Rooms (第一类斯特林数) 题面 有n个房间,每个房间有一个钥匙,钥匙等概率的出现在n个房间内,每个房间中只会出现且仅出现一个钥匙.你能炸开门k次, ...
- hdu 3625 Examining the Rooms——第一类斯特林数
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3625 n^2 求斯特林数就行.要减去的就是1号钥匙在1号房间的方案,即 s[ n-1 ][ m-1] . ...
- hdu 3625 Examining the Rooms —— 第一类斯特林数
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3625 学习斯特林数:https://blog.csdn.net/qq_33229466/article/d ...
- HDU 3625 Examining the Rooms【第一类斯特灵数】
<题目链接> <转载于 >>> > 题目大意:有n个锁着的房间和对应n扇门的n把钥匙,每个房间内有一把钥匙.你可以破坏一扇门,取出其中的钥匙,然后用取出钥匙打 ...
- HDU 3625 Examining the Rooms:第一类stirling数
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3625 题意: 有n个房间,每个房间里放着一把钥匙,对应能开1到n号房间的门. 除了1号门,你可以踹开任 ...
- hdu 4372 Count the Buildings 轮换斯特林数
题目大意 n栋楼有n个不同的高度 现在限制从前面看有F个点,后面看有B个点 分析 最高那栋楼哪都可以看到 剩下的可以最高那栋楼前面分出F-1个组 后面分出B-1个组 每个组的权值定义为组内最高楼的高度 ...
- HDU 3625 Examining the Rooms
题目大意:有n个房间,n!个钥匙,在房间中,最多可以破k扇门,然后得到其中的钥匙,去开其它的门,但是第一扇门不可以破开,求可以打开所有门的概率. 题解:首先,建立这样的一个模型,题目相当于给出一个图, ...
- HDU 4045 Machine scheduling (组合数学-斯特林数,组合数学-排列组合)
Machine scheduling Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU - 4625 JZPTREE(第二类斯特林数+树DP)
https://vjudge.net/problem/HDU-4625 题意 给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k). 分析 贴个官方题解 n^k并不好转移,于是 ...
随机推荐
- Python静态方法 类方法
通常情况下,类中函数中定义的所有函数,,都是对象的绑定方法,除此之外,还有专门的静态方法和类方法,这两个是专门给类使用的,但是对象非要调用也是不会报错的. 对象在调用的时候会把自己传递给self,也就 ...
- PhoneGap+JQuery Mobile移动应用开发学习笔记
最近一直在学习使用PhoneGap+JQuery Mobile的开发框架开发Android应用,抛开这个框架的运行效率不说,暂且将使用中遇到的问题进行一下整理. 1.JS文件引用顺序 也许在进行web ...
- ValidForm验证表单
在做项目时,要求熟悉项目中验证表单的插件,所以学习一下validForm这个插件 http://validform.rjboy.cn/document.html#validformObject
- HTTP无状态协议和session原理(access_token原理)
无状态协议是指协议对务处理没有记忆能力.缺少状态意味着如果后续处理需要前面的信息,则它必须重传,这样可能导致每次连接传送的数据量增大.另一方面,在服务器不需要先前信息时它的应答就较快. Http协议不 ...
- poj3335 Rotating Scoreboard
题目描述: vjudge POJ 题解: 半平面交判核的存在性. 重点在于一个点的核也算核. 这样的话普通的求多边形的版本就要加一个特判. 就是把剩下的一个节点暴力带回所有直线重判,这时判叉积是否$\ ...
- C#基础-字符串
字符串比较,strA.CompareTo(strB) A大于B 正数 A小于B 负数 A等于B 0 string strA = "ab"; string strB = " ...
- 如何用纯 CSS 创作一个行驶中的火车 loader
效果预览 在线演示 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/RBLWzJ 可交互视频 ...
- 详解wordpress如何把文件保存到阿里云OSS上!
自己搞了一个Wordpress的博客,装完之后一直晾着没管,最近闲来开荒.为了减小服务器的带宽.存储.CUP的压力,决定把博客中的所有文件都保存到阿里云OSS上面. 关于这个问题,自己去调用OSS的S ...
- Linux安装配置***客户端
1.创建root用户 sudo passwd root su root 2.安装shadowsocks sudo apt-get install python-pip sudo pip install ...
- Beyond Compare 4 30天试用期后,破解方法
Beyond Compare 4 30天试用期后,破解方法. 方法一:在安装目录下找到文件BCUnrar.dll,比如:D:\software\Beyond Compare 4,重命名该文件即可. 重 ...